
Quality-Impact Assessment of
Software Products and Services in

a Future Internet Platform

Farnaz Fotrousi

Blekinge Institute of Technology Licentiate Dissertation Series
No 2015:09

Quality-Impact Assessment of
Software Products and Services in

a Future Internet Platform

Farnaz Fotrousi

Licentiate Dissertation in
Telecommunication Systems

Department of Communication Systems
Blekinge Institute of Technology

SWEDEN

2015 Farnaz Fotrousi
Department of Communication Systems
Publisher: Blekinge Institute of Technology,
SE-371 79 Karlskrona, Sweden
Printed by Lenanders Grafiska, Kalmar, 2015
ISBN: 978-91-7295-318-5
ISSN 1650-2140
urn:nbn:se:bth-10949

Abstract

The idea of a Future Internet platform is to deliver reusable and
common functionalities to facilitate making wide ranges of software
products and services. The Future Internet platform, introduced by the
Future Internet Public Private Partnership (FI-PPP) project, makes the
common functionalities available through so-called Enablers to be
instantly integrated into software products and services with less cost
and complexity rather than a development from scratch.
Quality assessment of software products and services and gaining
insights into whether the quality fulfills users’ expectations within the
platform are challenging. The challenges are due to the propagation of
quality in the heterogeneous composite software that uses Enablers and
infrastructure developed by third parties. The practical problem is how
to assess the quality of such composite software as well as the impacts
of the quality on users’ Quality of Experience (QoE).
The research objective is to study an analytics-driven Quality-Impact
approach identifying how software quality analytics together with their
impact on QoE of users can be used for the assessment of software
products and services in a Future Internet platform.

The research was conducted with one systematic mapping study, two
solution proposals, and one empirical study. The systematic mapping
study is contributed to produce a map overviewing important analytics
for managing a software ecosystem. The thesis also proposes a solution
to introduce a holistic software-human analytics approach in a Future
Internet platform. As the core of the solution, it proposes a Quality-
Impact inquiry approach exemplified with a real practice. In the early
validation of the proposals, a mixed qualitative-quantitative empirical
research is conducted with the aim of designing a tool for the inquiry of
user feedback. This research studies the effect of the instrumented
feedback tool on QoE of a software product.

The findings of the licentiate thesis show that satisfaction, performance,
and freedom from risks analytics are important groups of analytics for

Abstract

ii

assessing software products and services. The proposed holistic
solution takes up the results by describing how to measure the analytics
and how to assess them practically using a composition model during
the lifecycle of products and services in a Future Internet platform. As
the core of the holistic approach, the Quality-Impact assessment
approach could elicit relationships between software quality and
impacts of the quality on stakeholders. Moreover, the early validation of
the Quality-Impact approach parameterized suitable characteristics of a
feedback tool. We found that disturbing feedback tools have negligible
impacts on the perceived QoE of software products.

The Quality-Impact approach is helpful to acquire insight into the
success of software products and services contributing to the health and
sustainability of the platform. This approach was adopted as a part of
the validation of FI-PPP project. Future works will address the
validation of the Quality-Impact approach in the FI-PPP or other real
practices.

Keywords: Quality of Experience (QoE), Quality-Impact, analytics,
software quality, KPI, Future Internet, Quality of Service (QoS),
assessment

!

Acknowledgments

I would like to express my sincere appreciation to my supervisors Prof.
Dr. Markus Fiedler and Prof. Dr. Samuel A. Fricker for their
continuous, invaluable, and helpful support and guidance of my
research. Despite their busy schedules, they were always available to
share their deep knowledge and give me their insightful feedback in my
study.
Thanks to my colleagues in DIKO and DIPT departments for the
enjoyable and educating conversations we have had. Especially, I would
like to thank Deepika and Indira for their supportive discussions and
their friendships.
I also use this opportunity to express my gratitude to partners involved
in the FI-STAR project, collaborated kindly and provided me with the
opportunity of doing these studies.
My deep appreciation goes to my family for being so encouraging and
supportive. Especially, I am so grateful to my spouse, Shahryar for his
great emotional and technical support along the way. He was truly my
invaluable consultant, who continuously shared with me his knowledge
and insight.
At last, a special gratitude to my father, for the life-long devotion, love,
and support he bestowed on me. He will always take part in the bests
that I will achieve through my life.

Overview of Papers and Deliverables

Papers in this Thesis
Chapter 2: Farnaz Fotrousi, Samuel Fricker, Markus Fiedler, and Frank
Le-Gall. “KPIs for software ecosystems: A systematic mapping study.”
5th International Conference on the Software Business (ICSOB 2014),
Paphos, Cyprus, 2014.

Chapter 3: Farnaz Fotrousi, Samuel Fricker, and Markus Fiedler.
“Quality Requirements Elicitation based on Inquiry of Quality-Impact
Relationships. ” IEEE 22nd International Conference on Requirements
Engineering (RE), Karlskrona, Sweden, 2014.

Chapter 4: Samuel Fricker, Farnaz Fotrousi, and Markus Fiedler.
“Quality of Experience Assessment based on Analytics.” 2nd European
Teletraffic workshop (ETS 2013), Karlskrona, Sweden, 2013.

Chapter 5: Farnaz Fotrousi, Samuel Fricker, and Markus Fiedler. “The
effect of requests for user feedback on Quality of Experience.” To be
submitted to Software Quality Journal, 2015.

Related Papers
Paper 1: Farnaz Fotrousi, Katayoun Izadyan, and Samuel Fricker.
“Analytics for Product Planning: In-depth Interview Study with SaaS
Product Managers.” Sixth International IEEE Conference on Cloud
Computing (CLOUD), Santa Clara Marriott, CA, USA, 2013.
Overview: The paper empirically identifies the important analytics for product
planning decisions in service-based software products, and describes the
strengths and limitations of using analytics to support product managers’
decisions.

Overview of Papers and Deliverables

vi

Paper 2: Samuel Fricker, Kurt Schneider, Farnaz Fotrousi,
Christoph Thuemmler. “Workshop videos for requirements
communication.” Requirements engineering, pp 1-32, 2015. doi:
10.1007/s00766-015-0231-5
Overview: The paper presents a workshop video technique and a
phenomenological evaluation of its use for requirements communication. The
technique elicits and uses the feedback from the users who provide their
perceptions with a video’s experience by annotating the video and expressing
the rationale behind each annotation.

Related Deliverables
Deliverable 1: “D6.2 Common test platform.” FI-STAR Public
Deliverables, June 2014.
Overview: The deliverable describes the common test platform including the
methods and tools for measuring the key performance indicators (KPIs)
defined within the European FI-STAR project. My contribution was to propose
the test platform for Quality of Experience (QoE) and Quality of Service (QoS)
KPIs provisioning and describe how data will be collected and analyzed.

Deliverable 2: “D6.4 Validated Services at Experimentation Sites.” FI-
STAR Public Deliverables, October 2015.
Overview: The deliverable represents the validation of FI-STAR applications
at the experimentation sites. My contribution was to measure, validate and
report the impact of the FIWARE platform as a Future Internet platform on the
End-to-End QoE & QoS of FI-STAR applications.

Contents

Abstract .. i

Acknowledgments .. iii

Overview of Papers and Deliverables ... v

Contents ... vii

List of Tables .. xi

List of Figures .. xiii

 Introduction ... 1 CHAPTER 1
1.1 Overview .. 1
1.2 Background .. 4

1.2.1 Analytics .. 4
1.2.2 Quality of Software .. 5
1.2.3 Quality of Experience .. 6

1.3 Research Objectives .. 8
1.4 Research Questions ... 10
1.5 Research Methodology .. 11

1.5.1 Systematic Mapping Study .. 12
1.5.2 Solution Proposal ... 12
1.5.3 Empirical Study ... 13

1.5.4 Validity Evaluation .. 14
1.6 Results .. 15
1.6.1 Summary of Results and Solution Proposal 15
1.6.2 Overview of Chapters .. 18
1.7 The Overall Contributions ... 22
1.8 Conclusions and Future Work ... 23

 KPIs for Software Ecosystem: A Systematic Mapping CHAPTER 2
Study ... 25

Abstract ... 25
Keywords ... 25
2.1 Introduction ... 25
2.2 Research Methodology .. 27

2.2.1 Research Questions .. 27
2.2.2 Systematic Mapping Approach .. 28

Contents

viii

2.2.3 Threats to Validity ... 31
2.3 Results: Ecosystem KPI Research ... 32

2.3.1 Kinds of Ecosystems .. 32
2.3.2 Types of Research .. 33

2.4 Results: Researched KPI Practice ... 34
2.4.1 Ecosystem Objectives Supported by KPI 34
2.4.2 KPI: Measured Entities .. 35
2.4.3 KPI: Measurement Attributes .. 37

2.5 Discussion ... 39
2.6 Conclusions .. 40

 Quality Requirements Elicitation based on Inquiry of CHAPTER 3
Quality-Impact Relationship .. 43

Abstract ... 43
Keywords ... 43
3.1 Introduction ... 44
3.2 Related Work ... 45
3.3 Quality-Impact Inquiry .. 47

3.3.1 Inquiry Process ... 48
3.3.2 Method Tailoring ... 52

3.4 Real-World Example of Method Application 53
3.4.1 Example Application ... 53

3.5 Lesson learned ... 58
3.6 Discussion ... 58
3.7 Conclusions .. 61
Acknowledgments ... 62

 Quality of Experience Assessment Based on Analytics . 63 CHAPTER 4
Abstract ... 63
Keywords ... 63
4.1 Introduction ... 63
4.2 Background .. 65
4.3 Approach .. 68

4.3.1 Measurement Model .. 68
4.3.2 Composition Model ... 71
4.3.3 Lifecycle Model ... 72

4.4 Conclusions .. 73
Acknowledgment .. 74

 The Effect of Requests for User Feedback on Quality of CHAPTER 5
Experience .. 75

Abstract ... 75
Keywords ... 76
5.1 Introduction ... 76
5.2 Background and Related Work ... 78
5.3 Research Methodology .. 80

5.3.1 Objectives .. 80
5.3.2 Research Questions .. 81
5.3.3 Study Design .. 81
5.3.4 Threats to Validity ... 87

Contents

ix

5.4 Analysis and Results .. 89
5.4.1 Characteristics of Feedback Requests that Disturb Users 89
5.4.2 The Effect of Disturbing Feedback Requests on QoE of a

Software Product .. 92
5.4.3 Feedback about Feedback Requests ... 96

5.5 Discussion ... 97
5.6 Summary and Conclusion .. 99

References .. 101

Acronynms ... 111

List of Tables

Table 2-1: Research questions .. 28
Table 3-1. An overview of variations ... 52
Table 3-2. Estimated quality values for given quality impacts 57
Table 4-1: Measurement of software quality .. 69
Table 4-2: QoE measurements mapping to Quality in Use 71

List of Figures

Figure 1-1: Overview of research studies ... 11
Figure 1-2. Overview of software products’ assessment in a Future Internet

Platform .. 17
Figure 2-1: Kinds of ecosystems that were studied with KPI research 33
Figure 2-2: Map of research on SECO KPI and type of contributions 33
Figure 2-3: Map of measured entities and measurement attributes in relation to

ecosystem objectives. ... 37
Figure 2-4: Merging classifications of measurement attributes 38
Figure 2-5: Map of measurement attributes in relation to the measured entities.

 .. 39
Figure 3-2: User interaction scenario with instrumented application and

subsequent answering of the quality of experience questionnaire 53
Figure 3-3: Questionnaire. .. 55
Figure 3-4: Extract from the log file with timestamps and activities 56
Figure 3-5: Quality impact (MOS) as a function of quality value (response

ime(s)) .. 56
Figure 3-6: Quality value (Response time (s)) as a function of quality impact

(MOS) ... 57
Figure 4-1: Patient data sharing solution .. 66
Figure 4-2: Measurement model: software analytics and empirical inquiry to

assess QoS, QoE and usage of software ... 69
Figure 4-3: Composition model .. 72
Figure 4-4: Software lifecycle model ... 73
Figure 5-1: Overview of the study design .. 82
Figure 5-3: Boxplot- QoE of software product in relation with QoE of feedback

tool .. 89
Figure 5-4: Distribution of QoE of the software application per each QoE of

the feedback tool .. 93

 Introduction CHAPTER 1

1.1 Overview

The recent years have observed an extensive development of software
products and services in Future Internet. Future Internet expects a huge
number of new interesting software and mission-critical services that
require advanced levels of interoperability (Zahariadis et al., 2011)
between software components, products or services. Also,
interconnectivity between software and devices as well as self-
configuring capabilities within the Internet infrastructure are some of
the features that characterize Future Internet.
Future Internet is an ongoing research paradigm, investigated through
many research projects. The FI-WARE project as a project of the
European Future Internet Public-Private-Partnership (FI-PPP) program
aims at an open platform to facilitate the creation of software with less
cost and complexity to serve users at large scale based on the Internet
(FI-WARE, 2015). FI-WARE delivers a service platform including
reusable and shared functionality components. The components are
referred as Enablers whether developed for a general purpose or for a
specific domain purpose such as health (FI-STAR, 2015). An Enabler
makes its functionality available to software products and services
through APIs. This is usually an easier and cheaper alternative to the
development of the functionality from scratch in software products and
services. The functionality of the Enabler is served by a Future Internet
infrastructure where the Enabler may be deployed on a different node
(e.g. virtual machine) than the software node.
The owner of the platform has to ensure that the platform is healthy
(Costanza & Mageau, 1999) and sustainable (Chapin, Torn, & Tateno,
1996). The platform owner monitors the health of the platform in terms
of its productivity for the surrounding stakeholders in order to identify

Chapter 1

2

the risk factors that threaten maintainability of the platform and shorten
the time of recovery (Costanza & Mageau, 1999). One of the risk
factors is about the quality of Enablers especially when they are
integrated and used in software products and services. Even though an
Enabler may pass the internal quality checking, it may be unsuccessful
to provide a good level of quality in use (Bevan, 1999) in integration
with the software to fulfill the users’ expectations.
Lack of insight into the quality of a platform and the impact of quality
on users makes the platform owner unable to assure that user demands
have been satisfied with the platform. Dissatisfaction of end users from
software products and services caused by quality shortcomings of the
platform endangers the health of the platform. This problem increases
the likelihood of user churn, meaning that the users discontinue using
the software products or services. In consequence, the product owners
are discouraged to continue using the platform services, which
negatively influences the platform’s sustainability. To reduce the
likelihood of losing customers and improving the platform success, a
software-human analytics-driven approach for assessment of software
products and services in a platform can be a solution.
For the platform owners who need to monitor the success of the
platform, using a Quality-Impact assessment approach is a suitable
solution. The approach measures the quality of software products and
services that use the platform services together with the impact of such
quality on users. The approach uses software-human analytics relevant
to the quality of software and platform as well as to the Quality of
Experience (QoE) of the users during an experience of the software and
platform. The approach also combines the quantitative analysis with
qualitative feedback to interpret the analytics. Unlike just pure software
quality analytics or pure QoE analytics or pure qualitative feedback, the
combination of the two categories of analytics and qualitative feedback
allows understanding the level of quality that could keep users satisfied.
And, if they are not satisfied, the owners can perform a root cause
analysis to identify whether the causes are shortcomings of the software
quality, quality issues with Enablers, or even the quality of the
underlying communication networks.
Software quality analytics and the impacts of the quality on users’
perception together are important for assessment. Software quality
analytics gives insights into the quality of software, integrated Enablers
in the software or the involved networks, but it does not say anything
about users’ satisfaction with the quality. Human quality analytics
reflects the Quality of Experience (QoE) of users in terms of the
“degree of delight or annoyance of the user” (Le Callet, Möller, &
Perkis, 2012) with the software, but does not reveal whether the quality

Introduction

3

of the software, the quality of the integrated Enablers, or some other
factors (Reiter et al., 2014) have influenced on a bad experience.
Therefore, software quality analytics and human analytics together
complement each other for assessment. Moreover, analytics cannot
replace or be replaced by qualitative user feedback (Fotrousi, Izadyan,
& Fricker, 2013). Analytics is not able to identify why users are not
satisfied (Clifton, 2012) but qualitative feedback is. Qualitative user
feedback is not able to provide insight into software quality, but
analytics is. Qualitative feedback interprets analytics and fills up the
gap between the users’ perceived quality and software quality.
This licentiate thesis provides an overview of literature to understand
main objectives of platform owners as well as the analytics that they use
for managing a software ecosystem. The thesis takes the findings and
proposes two complementary assessment approaches based on using
software-human analytics. As the early validation of the solutions, the
thesis investigates the characteristics of a supportive tool for the
proposed approaches.
The first study is a systematic mapping research to give an overview of
literature that addresses Key Performance Indicators (KPI) in a software
ecosystem. KPIs are those among the many possible analytics that are
important, easily measurable defined based on the platform owner’
objectives. The study provides classification maps to overview the KPIs
that are commonly used by platform owners.
The second and third studies describe approaches for assessments of
software products and services. The second study describes a Quality-
Impact inquiry approach. The study models the relationship between
software quality and its impact on users during a software experience.
The third study describes the composition of software-human analytics
for assessment of software products and services in the Future Internet
platform.
The last study is conducted in an empirical research as an early
validation of the proposals. It aims at understanding the effect of
feedback tool on Quality of Experience of the software that the
feedback is collected for. It also parameterizes characteristics of a
feedback tool to be used for designing a proper tool suitable for
inquiries of feedback.
The thesis is structured in five chapters as follows. Chapter 1 provides
an introduction to the licentiate thesis. The rest of this chapter gives an
overview of the related areas to the thesis in Section 1.2. Sections 1.3
and 1.4 present the thesis objectives and research questions
respectively. Section 1.5 overviews the research methods used to
address the research questions as well as threats to the validity of the
research. Section1.6 presents the summary of results and overviews the

Chapter 1

4

included studies in the thesis. Section 1.7 discusses the author’s
contributions. Section 1.8 concludes the thesis document with the future
works. Each of the next four Chapters, 2, 3, 4 and 5 addresses one
research paper included in the licentiate thesis.

1.2 Background

A platform owner needs to have insight into how the software products
and services, which are utilizing the platform’ services, make their users
satisfied to return using again. Acquiring such insight requires a
combination of analytics relevant to software quality and impact of the
quality on users. This section starts with the concept of analytics, how
to acquire the analytics and basic definitions used in this concept. Then
software quality and relevant standard models will be described. At last,
the Quality of Experience (QoE) and its measurement models will be
explained.

1.2.1 Analytics
Analytics is a source of information to guide managers in their
decisions. It is known as the data-centric style of decision making (Buse
& Zimmermann, 2010) that includes measurements to generate data and
to transform these data into indicators for decision support. In another
word, analytics is a use of statistics from measurement characteristics of
an entity (Davenport & Harris, 2007) to obtain insight and actionable
information (D. Zhang et al., 2011) and to take data-driven decisions
(Buse & Zimmermann, 2010, 2012).
Three types of analytics can be used for decision-making: descriptive,
predictive, and perspective analytics (Delen & Demirkan, 2013).
Descriptive analytics summarizes available data to inform decision
makers of what happened or is happening. Predictive analytics uses
historical data to detect data patterns and forecast a stimulus relevant to
software in the future to answer what will happen. Perspective analytics,
as a type of predictive analytics, also includes actionable data and
feedback to track the data to propose the best course of actions for a
given objective. This type of analytics uses complex mathematical
algorithms with techniques such as optimization modeling, expert
system and multi-criteria decision making (Delen & Demirkan, 2013).
Analytics is made through a chain of interrelated activities. The
activities introduce keywords in the Italic style that will be defined:
1- Measuring a set of measurement attributes of an entity through a
measurement function to build metrics
2- Analyzing the metrics in the context of an analysis model to have
indicators

Introduction

5

3- Interpreting the indicators to make required information for a
decision-maker
The steps define the measurement information model ISO/IEC 15939
(ISO/IEC-15939, 2007) for software development and systems
engineering. The involved keywords in a measurement chain can be
defined as:
- Entity is a platform, product, feature or requirement considered
relevant to the interaction between an end user and a software product,
service, or platform (e.g. product).
- Measurement attributes are properties or characteristics of an entity
relevant to information needs that can be distinguished quantitatively
(e.g. returning users).
- A Measurement method is a logical sequence of operations that
quantify a measurement attribute numerically by mapping it to a scale.
One or more measurement attributes can be the input for a measurement
method.
- A Measure is a variable that a value is assigned to, as the result of the
measurement. (e.g. number of returning users for product x in recent
month).
- Analysis is an algorithm or calculation that combines measures by
considering decision criteria. Model is an alternative terminology for
the analysis. The analysis is usually performed based on the expected
relationship between measures and/or their behaviors over time.
- Indicator provides an estimate or evaluation of specified measurement
attributes derived from a model of defined information for decision-
making (e.g. churn rate).
- Interpretation explains the quantitative information in the indicators
to the information needs in the language of the decision maker (e.g. new
product release decision).
Quality-related analytics is the kind of analytics that considers quality
attributes to be measured. The quality attributes are relevant to the
quality of software (software analytics) or impact of the using the
software on stakeholders (human analytics). Quality-related analytics
excludes the rest of analytics such as business and financial analytics.
The next two sections will describe the two categories of quality
characteristics.

1.2.2 Quality of Software
Software quality measures how well software is designed, implemented
and conforms to users’ requirements and standards. Several studies
model the software quality (Klas, Heidrich, Munch, & Trendowicz,

Chapter 1

6

2009) with the objective of providing a framework for the evaluation of
software quality. ISO/IEC-9126 (ISO/IEC-9126, 2001[part1] - 2003
[part2, part3]) is one of the most popular standards that models the
quality in a form of a taxonomy of quality characteristics and sub-
characteristics. The standard also defines a set of external, internal and
quality-in-use metrics for measurement of the characteristics and sub-
characteristics. Internal metrics measure the software itself in the static
mode and do not rely on software execution. The external metrics
measure the behavior of running software. Quality-in-use metrics
measure the impact of using software on stakeholders when users
experience the software in a real specific context of use.
ISO/IEC 25010 (ISO/IEC-25010, 2010) evolves the ISO/IEC 9126 with
few changes in the taxonomy of quality characteristics and sub-
characteristics but on the same basis. The model describes quality from
perspectives of product quality and quality-in-use. ISO/IEC 25010
defines the same six software quality categories of characteristics (i.e.
functionality, reliability, usability, efficiency, maintainability, and
portability) as well two more categories (i.e. security and compatibility).
The characteristics are broken down into sub-characteristics. As an
example maturity, availability, fault tolerance, and recoverability are
sub-characteristics of the reliability category. Quality-in-use is
composed of five characteristics, namely effectiveness, efficiency,
satisfaction, freedom from risk, and context coverage.
Quality-in-use characterizes the impact of the software on stakeholders
during a real usage. A platform owner looks for acceptable perceived
experiences of use (efficiency), acceptable perceived results of use
(effectiveness), acceptable perceived consequences of use (freedom
from risks) and the customer’s satisfaction in a specific context of use
(Herrera, Moraga, Caballero, & Calero, 2010). The information
enhances the platform owner’s intuitions about the impact of the quality
on users. Instead of separate measurements of quality-in-use attributes,
an alternative approach is to translate all quality impact measures into a
single measure that reflects perceived Quality of Experience (QoE), that
the next section will discuss.

1.2.3 Quality of Experience
Quality of Experience (QoE) is a terminology borrowed from the
telecommunications domain, used as a measure to determine how well
the end users perceive to be satisfied with a particular feature, product,
service or platform. “Quality of Experience (QoE) is the degree of
delight or annoyance of the user of an application or service. It results
from the fulfillment of his or her expectations with respect to the utility
and / or enjoyment of the application or service in the light of the user’s

Introduction

7

personality and current state.” (Le Callet et al., 2012).!

QoE is measured subjectively and objectively. QoE is measured
subjectively where a user rats the perception of use based on emotion,
experience and expectations. Subjective assessment of QoE is based on
quantitative users’ ratings on a set of scales of momentary or
remembered quality of features (Raake & Egger, 2014). For the
subjective measure, Mean Opinion Score (MOS) is a known metric
used by end-users to rate the service acceptability and quality
perception. MOS is scaled ordinal usually in the range of 5 to 1
(Excellent, good, fair, bad, poor). However, the subjective assessment
of QoE has challenges regarding the reliability of user ratings and
involvement of a lot of users especially in a crowdsourcing scenario
(Hoßfeld et al., 2014). To mitigate the challenges, objective
measurements of QoE are used alternatively.

QoE can be predicted and measured objectively (Brooks & Hestnes,
2010) through objective measures relevant to Quality of Services (QoS)
in the telecommunication domain such as end-to-end network quality,
network coverage, suitability of service content and ease of service
setup. QoE has been modeled in different application domains such as
speech communication (Côté & Berger, 2014), audio transmission
(Feiten, Garcia, Svensson, & Raake, 2014), video streaming (Garcia et
al., 2014), web browsing (Strohmeier, Egger, Raake, Hoßfeld, &
Schatz, 2014), mobile human-computer interaction (Schleicher,
Westermann, & Reichmuth, 2014), and gaming (Beyer & Möller,
2014). The target application domain as the context of use defines
metrics to model QoE.
To build an effective QoE control mechanism, objective and subjective
measures are combined for a correlation analysis. A study shows a
generic relationship between user-perceived quality (QoE) and network-
caused quality (QoS) (Fiedler, Hossfeld, & Tran-Gia, 2010). This
relationship can be used to estimate QoE for a certain value of the
network quality and to identify the required quality level for achieving a
specific level of QoE. We believe that this relationship is still valid
where software quality replaces network quality and correlates with
QoE. The current study will use the concept of this relationship.
QoE is influenced by several factors that can specify the reason for
users’ perception in a particular experience. Human, system and context
are categories of the influential and correlated factors that affect on QoE
(Reiter et al., 2014). Human factors mainly address emotional attitudes,
needs, motivations and expectations of human users. Context
characterizes the user environment including physical, social,
economical aspects. System factors determine technical quality of an

Chapter 1

8

application, a service or a device such as the performance of a mobile
device, usability, and functionality of software products and availability
of network communications. These factors will be important for
interpretations of QoE results later on during assessments.
QoE and User Experience (UX) are two concepts with the centralization
of experience of a human user. Wechsung & De Moor (Wechsung & De
Moor, 2014) discussed that QoE and UX have many similarities but
have more differences. The former is addressed in the
telecommunication field and the latter in the Human Computer
Interaction (HCI) field. QoE is mainly technology-centered where a
large part of research around investigates Quality of Service. But, UX is
human centered emphasizing on users emotions that is not driven by
technology (Roto, Law, Vermeeren, & Hoonhout, 2011). The main
focus of the QoE is on an evaluation of quality perception to inform
optimization of technical parameters. But UX gathers inputs for
designing products focusing on interactions for a pleasure experience.
Despite the differences, the UX literature can be useful to support QoE-
based research.

1.3 Research Objectives

A platform owner needs to gain insight into usage, health and
sustainability of the platform to understand the risk factors that threaten
the platform. Not only the external quality of platform services but also
quality-in-use of the services in a software product are parts of risk
factors. For the platform owner who needs to monitor the success of the
platform, using a Quality-Impact assessment is a suitable approach.
This approach assists the platform owner to assess the quality of
platform together with its impact on Quality of Experience. The
combination of analytics about software and human users together with
qualitative user feedback contribute in designing the approach.
The overall aim of the research is to identify how the platform owner
can use software quality analytics together with quality impact on users
to gain insight into the success of a Future Internet Platform. To achieve
the overall aim, the licentiate thesis defines the following objectives:
OBJ1: To understand software-human analytics that the platform owner
uses for managing the platform.
OBJ2: To propose a holistic approach to the assessment of software
products and services running on a Future Internet platform using the
Quality-Impact approach.

OBJ2.1: To describe the use of the Quality-Impact approach for
elicitation of the appropriate level of software quality.

Introduction

9

OBJ2.2: To describe a composition of analytics for holistic
assessment of software products and services running on a Future
Internet platform.

OBJ3: To validate the proposed approach in real-world practices.
OBJ3.1: To understand the effect of a feedback tool on the
perceived quality of software products and services that the
feedback is collected for.

The study investigates the objectives in three levels of acquiring
knowledge, proposing a solution and validating the solution in real
practices. Development of objectives relies on achievements of previous
objectives, which indicates details of objectives had been defined along
the progress of the study.
OBJ1 seeks for knowledge about software-human analytics and finding
out the most relevant analytics to the objectives that different platform
owners have determined. A literature study should be conducted to find
out the research gaps in analytics and the state of practices. In the study,
KPIs relevant to software ecosystem are explored. KPIs are qualified
analytics that are aligned with the objectives of the platform owners.
The research boundary of a software ecosystem assists understanding
possible relevant analytics that are based on or enabled by software.
OBJ2 aims at an assessment of software products and services running
on a Future Internet platform by using the generic relationship between
quality of software and users’ perception of the quality alongside the
composition measurements in the lifecycle of software products and
services. The choice of these groups of analytics comes from the OBJ1.
OBJ2.1 aims at a Quality-Impact approach to elicit the relationships
between quality and its impact on users. The approach uses principal
knowledge outlined in the earlier work about generic relationships
between Quality of Service and Quality of Experience and proposes a
quality assessment approach. OBJ2.2 presents key ideas for a
composition of measurements in the assessment of Future Internet
products and services based on the use of analytics. The proposed
approach models how to measure software quality analytics and predict
user-perceived Quality of Experience in a Future Internet platform.
OBJ3 aims at real-world validations of proposed approaches in OBJ2.
OBJ3.1 aims at understanding the side effects of feedback tools on QoE
of the software products and services, which the feedback is requested
for. This objective contributes to understanding characteristics of a
feedback tool that may impact the perceived quality of the software.

Chapter 1

10

1.4 Research Questions

The following research questions (RQ) have been formulated in the
licentiate thesis to address the research objectives in section 1.3.

Table 1-1: The thesis's research questions and research outcomes

Research Questions* Research Outcomes
RQ1: What analytics does a platform
owner use to manage the success of a
software ecosystem?

Classification maps of KPIs and
platform owners’ objectives in a
software ecosystem.

RQ2: How can software products and
services be assessed using a Quality-
Impact approach in the Future Internet?

A holistic assessment approach
using Quality-Impact relationship in
the Future Internet.

RQ2.1. How can the relations
between software quality and
Quality of Experience be elicited?

Description of a Quality-Impact
approach.

RQ2.2. How can analytics be
composed for the assessment of
software products and services in
a Future Internet Platform?

Description of software-human
analytics to be measured based on a
composition model during the
lifecycle of making products and
services in the Future Internet.

RQ3: Does a feedback tool affect
perceived quality of a software product
and service?

Understand the effect of a disturbing
feedback tool on QoE of software
products and service. Disturbing
characteristics of feedback tool are
also parts of the outcomes.

* The labels of the research questions (RQ) are independent of the labels used in the
studied papers, where each paper follows its own numbering schema.
To answer RQ1, Chapter 2 gives an overview of the literature that
address a use of KPI in a software ecosystem. The relevant study
identifies the purposes of using KPI in a software ecosystem and
overviews the relevant KPIs to achieve the objectives. The result
indicates the commonly used KPIs and objectives for managing a
software ecosystem. To answer RQ1, the study answers the following
questions:

- What kinds of ecosystems were studied?
- What types of research were performed?
- What objectives were KPI used for?
- What ecosystem entities and attributes did the KPI correspond

to?
The answer to RQ2 proposes a Quality-Impact assessment approach for
software products and services in the Future Internet based on findings
in RQ2.1 and RQ2.2. The answer to RQ2.1 proposes a Quality-Impact
approach to predict the quality level properly using quality impact

Introduction

11

analytics, and RQ2.2 proposes a composition of analytics to assess the
quality impact using software quality analytics in a Future Internet
platform.
RQ3 as an early step in the validation of the proposed solution evaluates
the feedback tool used for data collection. RQ3 aims to study whether
the triggered requests for feedback negatively affect user perception of
the software quality. It also investigates the characteristics of the
feedback tool may disturb users. To answer RQ3, Chapter 5 investigates
the following research questions:

- Which characteristics of feedback requests did disturb users?
- How did disturbing feedback requests affect QoE of a software

product?
- Did users provide feedback about feedback requests?

Figure 1-1 gives an overview of the included studies in the licentiate
thesis. The figure shows research questions mapped to the outcome of
each question in different phases of the study. Corresponding chapters
to the research questions are also identified in the figure.

Figure 1-1: Overview of research studies

1.5 Research Methodology

This section presents the description of methodologies used in the
licentiate thesis. Systematic mapping study, solution proposal and
empirical research were the methods used in the licentiate thesis.

Chapter 1

12

1.5.1 Systematic Mapping Study
To address RQ1, the study conducted a systematic mapping in Chapter
5. The systematic mapping approach gave an overview of KPIs used in
a software ecosystem by classification of relevant articles and map the
frequencies of publications over corresponding categories to build
classification schemas and to see the current state of research (Petersen,
Feldt, Mujtaba, & Mattsson, 2008). The systematic literature review
was an alternative method for systematic mapping study. However, it
differs in goals and depth. The aim of the study was not finding out the
best practices based on empirical evidence. It was enough to have a
broad overview rather than the time-consuming process of going
through details in depth. The reasons motivated us to choose systematic
mapping as the research methodology.
The research was conducted in the following four steps according to the
guideline introduced in (Petersen et al., 2008): A database search,
screening of papers, building classification schemas, and the systematic
mapping of each paper. In the database search step, we defined the
search string including keywords relevant to software ecosystem and
KPI. The search strings were searched in software engineering and
computer science research databases including Scopus, Inspec, and
Compendex, which also support IEEEXplore and ACM Digital Library.
In the screening step, we screened the identified papers to exclude
studies that do not relate to the use of KPI for any ecosystem-related
purpose. In the classification step, we employed keywording (Petersen
et al., 2008) as a technique to build the classification scheme in a
bottom-up manner. Extracted keywords were grouped under higher
categories to make them more informative and to reduce the number of
similar categories. In the last step, when the classification was in place,
we calculated the frequencies of publication for each category and used
x-y scatter plots with bubbles in category intersections to visualize the
generated map.

1.5.2 Solution Proposal
The studies in Chapter 3 and Chapter 4 are solution proposals
(Wieringa, Maiden, Mead, & Rolland, 2006). The studies propose a
novel solution in the form of a technical approach for using Quality of
Experience for assessment of software products and services. As
recommended in solution proposal papers (Wieringa et al., 2006), the
studies used examples or provided arguments as a proof-of-concept.
As required by a solution proposal, in both studies (Chapter 3 and
Chapter 4) we explained why such novel approach was needed,
specified the principles and steps of the method, and described how to
apply the method.

Introduction

13

1.5.3 Empirical Study
To address RQ3, the study conducted a mixed qualitative and
quantitative research method as presented in Chapter 5. The empirical
study used the QoE-Probe described in (Fotrousi, 2015) to collect user
feedback for a requirement modeling software called Flexisketch
(Golaszewski, 2013).
Participants: The participants were 35 software engineering students at
the graduate level, and familiar with the concepts of requirement
modeling. The study was performed as a part of the students’
assignment in the Requirement Engineering course.

Study procedure: The procedure for each participant followed two
parts:

1-Software Usage: Participants used Flexisketch integrated with the
QoE probe as the feedback tool. In the QoE probe, the probability of
automatic firing of the questionnaire was set to 10%. We requested the
participants to model the requirements defined through a video in the
Flexisketch and meanwhile provide answers to the fired questionnaire.
2-Post Questionnaire: At the end of the usage, we asked the participants
to fill in the questionnaire about their feedback for the modeling tool as
well as the feedback tool.
Data collection method: The feedback tool randomly requested
participants to provide feedback automatically while working with the
software product. The feedback tool collected ratings of the
participants’ experience with the feature they just used as well as their
rationale for their choice. Also, the study collected participants’
perceptions about feedback requests and about the experiences with the
software product after the completion of the experience through a post-
questionnaire. The collected feedback was analyzed individually to
answer the research questions.
Data analysis method: The study used qualitative content analysis,
pattern matching as well as quantitative descriptive analysis.
The study applied both inductive and deductive content analysis
approaches (Elo & Kyngäs, 2008; Thomas, 2006). The inductive
approach was conventional with the idea of coding data freely to
generate information, and the deductive was directed content analysis
approach based on using initial coding categories extract from the
hypothesis but might be extended (Hsieh & Shannon, 2005). The study
adapted the pattern matching analytical technique (Yin, 2014), by
comparing a predicted pattern with observed patterns concluded

Chapter 1

14

empirically. The statistical correlation analysis was also applied to
measure the relationships between observed variables.

1.5.4 Validity Evaluation

Similar to other research, the study is subject to validity evaluation.
Construct validity identifies whether the study reflects the
phenomenon that was searched for. The validity threat in Chapter 2
addresses whether the included papers in the study reflected the
Software ECOsystem (SECO) KPI phenomenon as it was intended to be
researched. The search string captured the wide variety of software-
related ecosystems with several names given to key performance
indicators. The common databases used for software and management-
related literature research including Scopus, Inspec, and Compendex,
were used to find papers. Also, the list of included papers was validated
against two systematic studies on software ecosystems (Barbosa &
Alves, 2011; Manikas & Hansen, 2013b), and we found that our review
covered all relevant papers.
The validity threat in Chapter 5 was relevant to the participation of
students, in the sense that whether the students’ answers were from their
own perceptions, or whether they were based on what their teacher
expected. To mitigate this threat, the assignment became optional, was
not graded, and was just used as a part of the learning process.
Reliability validity refers to the repeatability of the study for other
researchers. The study in Chapter 2 applied a defined search string and
followed a step-by-step procedure that can be easily replicated. The
stated inclusion and exclusion criteria were systematically applied.
Reliability of the classification was obtained by seeking consensus
among multiple researchers.
The validity threat was also discussable in Chapter 5 about repeatability
of the content analysis. To mitigate this threat, the first two authors of
the paper peer reviewed the quotes. The first reviewer documented the
design of content analysis process as a guideline with the significant
degrees of freedom for coding. To increase the reliability of the coding,
the first and second authors, as reviewers, followed steps independently
to achieve the same set of categories. In the case of some conflicts, they
negotiated for the final categories.
Also, to increase the reliability of the results over evaluation of findings
in Chapter 5 the study used triangulation strategy through content
analysis, pattern matching and statistical analysis to answer the core
research question (the second research question).
Internal validity refers to the extent to which the results may have been
biased, and the study design avoids confounding. The threat is small in

Introduction

15

the study of Chapter 2, since only the descriptive statistics, which count
the frequency of categories, were used.
External validity concerns the ability to generalize from this study.
Generalization is not an aim of a systematic mapping study, as only one
state of research is analyzed. In particular, the study results about the
use of SECO KPI, reflects the practices studied in SECO KPI research
and not SECO KPI practice performed in general.
Chapter 5 addresses the subject of external validity. The inductive
content analysis targets a specific group of students that experience just
one design-modeling product. To make the research generalized, similar
research for other groups of population with different software should
be designed and conducted as future research.

1.6 Results

1.6.1 Summary of Results and Solution Proposal

An overview of literature about KPIs in a software ecosystem in
Chapter 2 revealed that platform owners mainly aim at improving
business, interconnectedness between individual actors and subsystems
of the ecosystem, as well as at improving quality. To assess the
objectives they mostly use KPIs relevant to satisfaction, performance
and freedom from risks measures (which answers RQ1).
Improving the quality and interconnectedness can be directly measured
using quality-related analytics whether the analytics are relevant to
software quality (e.g. performance, freedom from risk) or relevant to
human (e.g. satisfaction). This relation informs Quality-Impact
approaches.
A platform owner can use a Quality-Impact approach to elicit specific
relationships between software quality levels and their impacts for
given quality attributes on stakeholders as shown in Chapter 3 (which
answers RQ2.1). In Chapter 3, an example of this relationship was
discussed for eliciting non-functional requirements where an
understanding of such relationship can specify the right level of quality
for deciding about acceptable impacts. This approach proposed to
measure software analytics objectively from a software product or
services and subjectively from a formulated questionnaire through a
workshop.
A platform owner measures the composition of analytics for assessment
of products and services. The approach is proposed based on three
models of measurement, composition and lifecycle as discussed in
Chapter 4 (which answers RQ2.2). The measurement model describes
measuring QoS and usage analytics (i.e. software analytics) together

Chapter 1

16

with QoE analytics (i.e. human analytics). Time, error and MOS (Mean
Opinion Score) measures are valuable measures since they can support
most of quality attributes defined according to ISO 25010. The
measurement is applied during the lifecycle of the product (e.g. lab
testing, runtime) based on rules defined for the propagation of quality
measures according to the composition model.
Figure 1-2 illustrates an overview of a Quality-Impact approach (which
answers RQ2) as the result of aggregating the answers to RQ2.1 and
RQ2.2. The aim of the solution is to propose a holistic assessment
approach that measures and analyzes the quality of software products
and services as well as the impact of the quality on the users’ feelings in
during the software lifecycle in a Future Internet platform. The result of
the analysis identifies how software products and services satisfy users
and describes the acceptance level of their quality. The qualitative user
feedback given after usage interprets the analysis. The assessment is not
performed just for the final software product used in the real world
environment, but it can also be performed during the factory acceptance
testing, software release, and site acceptance testing.
Figure 1-2 shows a timeline that marks events relevant to data
collection and analysis. Starting a user experience of a software product
and service initiates collecting usage logs continuously during the usage
period. The collected data aims to measure usage-based, time-based and
error-based quality analytics. Requests for user feedback are fired
periodically to collect the experience of a user during the experience at
the end of the usage. A post-questionnaire collects the overall user
feedback reflecting the user experience. The three types of data
contribute to performing quantitative QoE and QoS analyses,
correlation analysis between QoE and QoS, data as well qualitative
feedback analysis. The analyses may cover all types of descriptive,
predictive and perspective analytics that will be discussed amongst
future research.
The data collection and analysis are performed based on using the
composition model that defines which components have been integrated
into the software product. The composition model in data collection
identifies the source of measurements to be collected and in analysis
identified how the quality is propagated between the involved
components and infrastructure.

Introduction

17

Figure 1-2. Overview of software products’ assessment in a Future Internet Platform

To validate the solution, the thesis contributed to an implemented QoE-
probe (Fotrousi, 2015) as a feedback tool developed for the Android
operating system. The QoE probe is integrated with another mobile
application to collect software analytics (QoS) as well as user ratings
(QoE). During the integration phase, developers tag events relevant to
start and end of features as well as important actions.
During the usage phase, the tags record the usage logs with data
including application name, hashed user id, timestamp, event, feature
name, action name to enable measuring usage and QoS analytics
relevant to the product. Also, in the completion of a specific
feature/scenario during the usage, a short QoE questionnaire is fired
automatically to collect the overall user impression reflecting the user’s
experience. As recommended in (Menzies & Zimmermann, 2013), the
feedback tool frequently asks users’ opinions in a form of a short
questionnaire:
Q: Please rate your experience with the feature you just used:
!Excellent !Good !Fair !Poor !Bad
Please provide why you feel that way: _______________________

Chapter 1

18

In answering the questionnaire, QoE data are also logged. Together with
the collected QoS data (usage log) it will be sent to the server for
analysis.
As discussed in Chapter 5, the automatic firing of the feedback requests
may disturb users. Feedback requests that interrupted a user task, too
early in the process of learning the application, too frequently, or with
apparently inappropriate content were perceived to be disturbing by the
users.
However disturbing feedback requests did not necessarily affect users’
perception of software product’s quality (which answer RQ3). It means
that if the feedback tool disturbs the users, it does not indicate that the
QoE of the software products is always perceived bad. QoE of the
software product was essentially justified with other influential factors
such as quality of products and the devices that the product runs on.

1.6.2 Overview of Chapters

Chapter 2 gives an overview of the literature on the use of KPI (Key
Performance Indicators) for software-based ecosystems. A systematic
mapping methodology was followed and applied to 34 included studies
published from 2004 onwards.

Two major kinds of ecosystems were researched: software ecosystems
and digital ecosystems. Many application domains such as software
development, telecom, business management, logistics, transportation,
healthcare were addressed, but most of them with one or two papers
only. The published research was mature with the journal, conference,
and workshop papers. They were conceptual proposal, solution
proposal, validation, and evaluation papers that covered metrics,
models, and methods contributions.

The study showed that KPIs were used to achieve a variety of
objectives. Platform owners aimed, at improving business, at improving
the interconnectedness between actors, at growing the ecosystem, at
improving the quality of the ecosystem, product, or services performed
within the ecosystem, and at enabling sustainability of the ecosystem.

The included papers in this study described measurements applied to the
whole ecosystem or a part of the ecosystem, which consists of actor,
artifact, service, relationship, transaction and network. The
measurement entities were identified in relation to the ecosystem
objectives. To measure the entities, we classified the measurement
attributes into categories of size, diversity, satisfaction, performance,
financial, freedom from risk, compatibility, and maintainability.

Introduction

19

Among the papers, the most common objectives were reported as
improving the interconnectedness between individual actors and
subsystems of the ecosystem as well as improving quality or business of
the overall ecosystem. Satisfaction, performance, and freedom from
risks measures were the most common categories of KPIs.

The presented taxonomy assists to identify relevant KPI considering
domain and objectives, however due to the limitation of the study, the
selection should be done carefully. The similarity of objectives is not
the only factor in selecting a KPI.

The results of the mapping study indicate that more research is needed
to obtain a better understanding of KPI, for software-based ecosystems.
In particular, a deeper understanding of how the application domain
affects an ecosystem’s KPI is needed. Also, an important research
opportunity is the identification, analysis, and evaluation of KPI. Such
research could make the work with KPI more flexible because a greater
variety of KPI would be known and available for the practitioner to use.

Chapter 3 describes an approach to quality requirements elicitation
based on the inquiry of Quality-Impact relationships. The method,
called Quality-Impact Inquiry, is based on the quality of a product and
subjective feedback from the stakeholders about perceived quality
impacts. The method guides a requirements engineer in the systematic
inquiry of good-enough software quality from the viewpoint of the
appropriate stakeholders of the software system. The solution proposal
article describes the method in details and reports early experience from
applying the method.

The Quality-Impact Inquiry method is performed in four processes:
preparation, measurement, analysis and decision-making. During
preparation, the required materials are prepared including the
preparation and documentation of a prototype, the formulation of a
questionnaire, the recruitment of stakeholders for participation in a
workshop, and the scheduling of the workshop.

The measurement process aims at collecting quality measurements and
user feedback. While stakeholders are using the software, quality
attributes of the experience are measured. At the end of using the
software, a questionnaire is administered to collect stakeholder opinions
about the impacts of the perceived quality.

In the analysis process, the quality measurements are correlated with
the stakeholder opinions about quality impact. The analysis uses a
regression function to estimate the quality impact for a given quality
value. The output of the analysis proposes a list of quality values for
different quality impacts.

Chapter 1

20

During the decision-making process, the requirement engineer decides
about acceptable and desired levels of quality of the investigated quality
attributes and updates for the relevant quality requirement in the SRS
document, if needed. The step concludes with decision-making about
whether to add inquiry iterations.

The Quality-Impact Inquiry method was applied in a real-world project
in the healthcare domain. An example presented an application of the
method for a Diabetes smartphone product. Diabetes patients use the
product to take blood glucose measurements, to plan insulin injection,
and to send the collected observation history to a diabetes specialist for
consultation. The Quality-Impact relationship is evaluated for the
features user authentication and observation sharing of diabetes
information. The article reports how the method is applied to the
requirements engineering endeavors, shares early experiences from
applying the method, and gives recommendations reporting the practical
use of the method.

Future research should aim at validating and evaluating the method in
further, large-scale requirement engineering situations. Moreover,
future research should aim at expanding the understanding of the
generic relationships between given combinations of software quality
attributes and their impacts as well as how quality attributes interact
with each other. The resulting knowledge will translate into a SLA and
help to allow and to reuse the knowledge of appropriate quality levels.
It will also help accelerating and simplifying quality requirements
inquiry in real-world projects, and enable research to check deeply held
beliefs about how quality and impacts are interrelated.

Chapter 4 introduces quality assessment of heterogeneously sourced
systems based on a composition of analytics. This approach combines
QoS and QoE measurements to assess quality through the composition
model of software during the software development lifecycle.

The paper introduces the concept of Generic Enablers (GE) as the
generic components used to develop products for the Future Internet
platform. It explains the characteristics of such heterogeneous sourced
products in Future Internet together with the metaphor of a host that
prepares a delicious meal for guests.

The paper compares the GE-based approach with buying the ingredients
for a delicious home-prepared meal in a supermarket, where both the
quality of the ingredients and their skillful preparation determine the
quality of the prepared meal. Although the host can judge the quality of
the meal, but the ultimate judgments of that quality is seen in the
appraisals of the host’s guests and in the amount that people eat. By
translation of this metaphor to the domain of the Future Internet, the

Introduction

21

paper discusses the importance of quality of GEs, the way they are
composed as well as the corresponding ecosystem.

Then, the paper discusses three models: A measurement model, a
composition model, and a lifecycle model. The approach addresses a
measurement model that describes how analytics and empirical data is
collected and used for the assertion of QoS and QoE. By the support of
literature, the paper discusses the importance of time- and error-based
measurements together with MOS measure. The paper also discusses
how the measures support the quality characteristics of ISO-25010.
Also, the approach proposes using the combination of the measurement
and composition models to enable early measurement of quality. The
approach proposes quality assessment in different stages of the lifecycle
model. Measurements along the product lifecycle allow planning for
step-wise improvement of the quality.

Future work includes validation of the approach. A particular focus will
be given to the healthcare environment, where quality assurance is
particularly important as it may decide on death or life.

Chapter 5 presents an empirical research that explores the relationship
between feedback requests and QoE. In this study, the QoE-probe as the
feedback tool was integrated with a mobile product. The feedback tool
prompted users for the feedback about the product randomly. The tool
collected users’ perceptions of their experience during their interaction
with the product. At the end of the experience, a post-questionnaire
received users’ feedback about the feedback tool and the software
product.
The analysis of users’ feedback about the feedback tool identified
categories of causes that led to disturbance of users. Users perceived
disturbance of Feedback requests that interrupted a user task, too early,
too frequent, or with unsuitable contents. The findings contributed to
parameterize the characteristics of feedback requests. The study
modeled a feedback request with four-tuple variable referring to the
experience space, the time frame within the space, number of feedback
requests in the time frame and the content of feedback request. This
model implies that user disturbance may be avoided by a suitable
configuration of the variables.
The analysis of users’ feedback about the software product showed the
disturbances generated by the feedback tool have a negligible impact on
the QoE of the software product. Triangulation of the study through
three different analyses confirmed the finding: A pattern matching
analysis showed that the disturbance caused by the feedback tool did
not always create a bad experience of the software product. A
correlation analysis confirmed that the QoE of the software product was

Chapter 1

22

not statistically correlated with the QoE of the feedback tool. The
content analysis of users’ feedback presented that QoE of the software
product was essentially justified with other influential factors rather
than via disturbing feedback requests. The quality of the software
product and the experiencing context like device characteristics were
the focal points of arguments to justify the users’ rates.
The negligible impact of feedback requests on QoE implies that
software product vendors may trust the data that their feedback tools
collect, even if the feedback tool may disturb the users. The collected
feedback can be informative about the software products or even the
disturbing feedback tool.
The results of the study were limited to experiences of students with a
modeling mobile product. The contextual factors might have an effect
on the obtained results. In future, other studies with different types of
products can complement the current study to increase the reliability of
the results. Also, there is another open research in the future for
empirical case studies where the parameters of feedback requests have
been controlled in relation with QoE.

1.7 The Overall Contributions

This licentiate thesis provides the following six contributions:
C1: A better understanding of platform owners’ objectives and relevant
KPIs that are measured, analyzed and used for decision-making in a
software ecosystem. From a researcher’s point of view, the study
captures state-of-knowledge and can be used to plan further research.
From a practitioner’s view, the generated map refers to studies that
describe how to use KPI for managing of a SECO.
C2: Describing the Quality-Impact Inquiry method to elicit non-
functional requirements based on relations between quality and its
impact on users’ perception. On one side, the method contributes to
show how the correlation between quality and impact of the quality on
users can be defined. On the other side, the Quality-Impact relationships
can be used to design and dimension a software system appropriately
and, in a next step, to develop service level agreements that allow for
re-use of the obtained knowledge of good-enough quality.
C3: Describing the approach to measuring a combination of software-
human analytics using a composition model during the lifecycle of
making products and services in the Future Internet. The study
contributes a QoS and QoE measurement-based approach to managing
quality using a composition model during the lifecycle of products and
services. The paper explains the approach with the metaphor of a host
that prepares a delicious meal for guests. An exemplar is taken from the

Introduction

23

FI-STAR project to describe how the approach is transferred into a real-
world environment.
C4: Implementation of the QoE probe tool as an Android mobile
product to collect product-human analytics as well as qualitative user
feedback. The tool can be used in the development of feedback-based
research projects as well as in the evaluation of software products based
on users’ feedback in practice.
C5: Understanding and modeling the characteristics of a feedback tool
that may disturb users. The study parameterized the characteristics of
feedback requests. It informs researchers with the factors that disrupt
users’ experiences in order to help them in finding feedback
mechanisms to take control over users’ disturbance. The study also
helps practitioners in designing the feedback tool by adjusting the
parameters.
C6: Understanding that feedback requests have negligible impacts on
users’ QoE of the software product as such. The study showed that the
quality of software products have more impact on QoE rather than
characteristics of the feedback tool. For practitioners, it implies the
importance of their focus on the product’s quality, although designing a
proper feedback tool should not be neglected, since it contributes to
collect informative feedback about the software product.

1.8 Conclusions and Future Work
The recent years have observed the development of heterogeneous
composite software products and services that integrate common
reusable functionalities from a Future Internet platform. Due to the
propagation of the quality of such software, quality assessment and
gaining insight into whether the quality fulfills the users’ expectations
are challenging. An analytics-driven approach that considers both
software quality and the impact of the quality on users inform a
platform owner to assess usage, health, and sustainability of the
platform.

The study provided an overview of the literature on the use of analytics
for software-based ecosystems. A produced classification map shows
that platform owners mostly use satisfaction, performance, and freedom
from risk categories of analytics. This finding was taken for proposing
assessment solutions using analytics.

The study proposes a holistic approach for assessment of software
products and services in a Future Internet platform using the Quality-
Impact approach to gain insight into the success of software products
and services. This approach measures and correlates the software
quality analytics as well as the impacts on users’ perception of the

Chapter 1

24

Quality of Experience (QoE). The correlation analysis informs
predicting QoE for a specific level of quality or find out the quality
levels that may disturb the users. The approach uses the software
composition model during data collection and analysis to model the
Quality-Impact based on the propagation of the quality of the composite
software.

To validate the Quality-Impact approach, a QoE probe was developed
to collect software quality analytics automatically as well as users’
QoE. The early validation of the Quality-Impact approach
parameterized characteristics of feedback requests. Although disturbing
feedback tools have negligible impacts on the perceived QoE of
software products, designing the suitable feedback tool, however,
contributes to collect effective feedback to enhance the products. The
Quality-Impact approach was adopted as a part of the validation of the
FI-PPP project. To validate the Quality-Impact solution, a QoE probe
was developed in order to collect software quality analytics
automatically as well as users’ Quality of Experience. The early
validation of the Quality-Impact approach parameterized characteristics
of feedback requests. Although disturbing feedback tools have
negligible impacts on the perceived QoE of software products,
designing a suitable feedback tool contributes to collect effective
feedback to enhance the products. The Quality-Impact approach was
adopted as a part of the validation of FI-PPP project.

Future work aims at validation of the proposed Quality-Impact
assessment approach through empirical research such as case studies in
the FI-PPP project or other real practices. Future research will
investigate how to correlate QoS and usage analytics with the QoE
analytics and how the qualitative user feedback will be supportive of the
interpretation of quality. The analysis will consider the composition
model to investigate how quality propagates in the composite software.
In this correlation analysis, all three types of descriptive, predictive and
perspective analytics will be investigated.
Furthermore, the study aims at improving the design of the QoE probe
to be supportive of the above study. A self-adaptive mechanism of
receiving feedback, which applies lessons learned about suitable
characteristics of a feedback tool, is planned in the study’s roadmap.
The future research also extends the capability of QoE probe to collect
data in a distributed environment where elements of the composite
software provide services through distributed nodes in a Future Internet
platform.

 KPIs for Software CHAPTER 2
Ecosystem: A Systematic Mapping
Study

Abstract

To create value with a software ecosystem (SECO), a platform owner
has to ensure that the SECO is healthy and sustainable. Key
Performance Indicators (KPI) are used to assess whether and how well
such objectives are met and what the platform owner can do to improve.
This paper gives an overview of existing research on KPI-based SECO
assessment using a systematic mapping of research publications. The
study identified 34 relevant publications for which KPI research and
KPI practice were extracted and mapped. It describes the strengths and
gaps of the research published so far, and describes what KPI are
measured, analyzed, and used for decision-making from the researcher’s
point of view. For the researcher, the maps thus capture state-of-
knowledge and can be used to plan further research. For practitioners,
the generated map points to studies that describe how to use KPI for
managing of a SECO.

Keywords

Software ecosystem, digital ecosystem, performance indicator, KPI,
success factor, systematic mapping

2.1 Introduction

A software ecosystem (SECO) is about “the interaction of a set of actors
functioning as a unit and interacting with a shared market for software
and services, together with the relationship among them” (Jansen,

Chapter 2

26

Finkelstein, & Brinkkemper, 2009). We include here any ecosystem
that is based on or enabled by software, including pure software,
software-intensive systems, mobile applications, cloud,
telecommunications, and digital software ecosystems. The inclusion of
telecommunications, for example, is important as many modern
software services can only be realized with appropriate ICT
infrastructure. Companies adopt a SECO strategy to expand their
organizational boundaries, to share their platforms and resources with
third parties, and to define new business models (Manikas & Hansen,
2013b; Weiblen, Giessmann, Bonakdar, & Eisert, 2012).

A SECO is frequently supported by a technological platform or market
that enables the SECO actors in exchanging information, resources, and
artefacts. Ownership of such a platform gives strategic advantages over
the other SECO actors. It allows satisfying ever-increasing customer
demands with limited own resources. It also allows improving one’s
own knowledge about the marketplace. Such knowledge is necessary
for innovation, evolution of a product or service offering, and
identification of revenue opportunities (Barbosa & Alves, 2011; IBosch,
2009).

SECO platform ownership also brings responsibilities. These include
the definition of SECO performance objectives and management of the
SECO to achieve these objectives. A SECO is expected to be healthy
(Costanza & Mageau, 1999) and sustainable (Chapin et al., 1996). It is
healthy when it is productive for surrounding actors, robust, and niche-
creating (Iansiti & Richards, 2006). It is sustainable when it maintains
its structure and functioning in a resilient manner (Costanza & Mageau,
1999). Health and sustainability are closely linked performance
objectives (Rapport, Costanza, & McMichael, 1998) that are often
found in complex systems (Costanza, 1992).

Managing a SECO involves definition of how actors, software, and
business models play together to achieve the SECO objectives (Manikas
& Hansen, 2013a) in business, technical, and social dimensional
perspectives (Santos, Werner, Barbosa, & Alves, 2012). The platform
owner uses performance indicators for benchmarking and monitoring
the resulting ecosystem behavior. Key performance indicators (KPI) are
those among the many possible indicators that are important, easily
measurable quantitatively or with an approximation of qualitative
phenomena (Parmenter, 2010). The KPI serve as early warnings about
potentially missed SECO objectives (Westin, 1998) and to detect
patterns that are useful for predicting health and sustainability of the
SECO (Cokins, 2009). Any deviation from success baselines are
recorded and acted upon to ensure that the main ecosystem’s objectives
are met.

KPIs for Software Ecosystem: A Systematic Mapping Study

27

The here presented study gives an overview of literature on KPI for
software ecosystems. A systematic mapping methodology was followed
to identify and classify publications based on the reported research and
based on KPI use. The dimensions used for classifying research were
the type of ecosystem that was studied and the type of result that was
delivered by the research. The dimensions used for classifying KPI use
were the researched KPI types, the SECO objectives these KPI were
used for.

The knowledge gap for collecting evidences about KPI studies
motivated to systematically evaluate distribution of studies and provide
guidance for future improvement. For practitioners, the generated map
describes how to use KPI in the management of a SECO. It enables the
platform owner in understanding the indicators that are important to
assess for given SECO objectives. For researchers, the generated map
describes state of research and helps finding research gaps for
understanding the definition and use of SECO KPI.

The remainder of the paper is structured as follows. Section 2 presents
the research objectives and defines research questions, search strategy,
study selection, and study quality assessment. Sections 3 and 4 present
the results by giving an overview of SECO KPI research, respectively
SECO KPI practice. Section 5 discusses the results. Section 6
summarizes and concludes.

2.2 Research Methodology

The goal of this study is to provide an overview of the research
performed to investigate the use of KPI for managing software
ecosystems. The systematic mapping approach (Petersen et al., 2008)
allows to map the frequencies of publications over categories to see the
current state of research. It also exposes patterns or trends of what kind
of research is done, respectively has been ignored so far. Mapping the
research results, in addition to the type of research, reveals researchers’
current understanding of KPI-related practice.

2.2.1 Research Questions
To provide an overview on publications relevant to KPI use for SECO,
two sets of research questions are defined in Table 2-1. With the first set
of questions we mapped foci and gaps of research about SECO KPI.
With the second set we mapped the state of practice that was reported
by the research.

Chapter 2

28

Table 2-1: Research questions

SECO KPI Research Rationale

RQ1: What kinds of
ecosystems were
studied?

The answer to this question shows the intensity of SECO
KPI research across application domains and types of
ecosystems. Skewedness, e.g. due to a focus on just a few
types of application domains and ecosystems, indicates
gaps where additional research is needed.

RQ2: What types of
research were
performed?

The answer to this question shows the maturity of SECO
KPI research. The more disproportioned conceptual
solutions and empirical validation research are, the more
there is a need for research that compensates.

Ecosystem KPI
Practice

Rationale

RQ3: What objectives
were KPI used for?

The answer to this question shows the purposes of SECO
KPI. It allows understanding when a SECO is considered to
be successful and when not. Correlation with the answer to
RQ4 allows understanding how the satisfaction of these
SECO objectives is measured.

RQ4: What ecosystem
entities and attributes did
the KPI correspond to?

The answer to this question gives an overview of relevant
KPI that are used to assess achievement of SECO
objectives. The KPI show how SECO objectives are
operationalized and quantified. Skewedness, a focus on just
one or a few KPI, may indicate the degree of universality
the KPI have for SECO management.

2.2.2 Systematic Mapping Approach
To answer RQ1, RQ3, we followed the systematic mapping guidelines
proposed by Petersen (Petersen et al., 2008). We (i) conducted database
search with a search string that matched our research scope, (ii)
performed screening to select the relevant papers, (iii) built a
classification scheme based on keywording the papers’ titles, abstracts,
and keywords, and (iv) used this classification scheme to map the
papers. To answer RQ2, we modified the mapping process by using the
pre-existing classification schemes already used in (Petersen et al.,
2008; Wieringa et al., 2006). For RQ4, we built the classification
scheme by extracting keywords from the main body of the papers and
aligning the emerging scheme with the relevant software industry
standard. The research steps are explained below.

(i) Database search. The study defined the following search strategy.
Search String. To get an unbiased overview of KPI use in SECO, the
search string was created with keywords that capture population only.
The first aspect used to define the population was the ecosystems that
can be found in a software context: software, digital, mobile, service,

KPIs for Software Ecosystem: A Systematic Mapping Study

29

cloud, telecommunication, and ICT ecosystems. We also included
papers that focused on software supply by adding software supply to the
search string. The second aspect used to define the population was the
application or use of KPI. We used the terms indicators, metrics,
measurements, success factors, key characteristics, and quality
attributes as synonyms for KPI. To avoid bias about RQ3, we did
neither constrain for what purpose information was gathered and used.
To build a broad overview of the research area and avoid bias, no
keywords were defined in relation to intervention (e.g. monitoring),
outcomes (e.g. improvements to a SECO), or study designs (e.g. case
studies).
The search string was built by concatenating the two population aspects
with the AND operator. The search string was formulated as follows:
software OR (software-intensive) OR digital OR mobile OR service OR
cloud OR communic* OR telecom* OR ict) PRE/0 (ecosystem* OR
"supply network*") AND (measur* OR kpi* OR metric* OR analytic*
OR indicator* OR "success factor*" OR "quality attribute*" OR "key
characteristic*".
Search Strategy. The papers were identified using the important
research databases in software engineering and computer science
including Scopus, Inspec, and Compendex, which support IEEEXplore
and ACM Digital Library as well. The search string was applied to title,
author’s keywords and abstract of these papers. The search did not
restrict the date of the publication.
Validation. We validated the set of identified papers by checking it
against the papers used in the SECO literature reviews performed by
(Barbosa & Alves, 2011; Manikas & Hansen, 2013b). Each paper used
by these studies that was relevant for our study had been found by
following the above-outlined database search.

(ii) Screening of papers. The inputs for this step were the set of papers
identified with step (i). The first and second authors screened these
papers independently We screened these papers to exclude studies that
do not relate to the use of KPI for any ecosystem-related purpose and to
ensure broad-enough coverage of the population. We describe here a
complete set of inclusion and exclusion criteria.
Inclusion. We included peer-reviewed journal, conference, or workshop
papers that were accessible with full text. The included papers describe
the use of KPI in an ecosystem context or the effects of such KPI on
properties of the ecosystem. Due to the importance of networking
infrastructure and digital information exchange for a well-functioning
software ecosystem we included telecommunication and information
technology papers in addition to pure SECO papers.

Chapter 2

30

Exclusion. We excluded papers that focused on the use of KPI for
managing a member of the ecosystem only. For example, papers about
the use of indicators for managing a single company that participates in
the ecosystem, or a product or process of that company, were excluded
because of their too narrow focus. We excluded papers that focused on
other ecosystems rather than a software ecosystem. For example papers
focus on biology, environmental, climate, and chemical aspects were
excluded. When the definition of software ecosystem did not fulfill in
the papers, they were excluded. As an example, the paper that
considered Bugzilla and email system as software ecosystems was
excluded, since such systems do not address the shared market concept
of a SECO definition. Papers that study qualitative indicators using
qualitative approaches such as a structured interview were excluded.
Also, we excluded papers that focused on ecosystem design in place of
ecosystem management. For example, papers about the design of
interoperability protocols or of products or services offered to an
ecosystem were excluded. The papers that do not Finally, to avoid
inclusion of papers that only speculated about KPI use or effects, we
excluded papers that did not report any empirically-grounded proof-of-
concept.
(iii) Building the classification scheme. To answer the research
questions RQ1, RQ3, and RQ4 we employed keywording (Petersen et
al., 2008) as a technique to build the classification scheme in a bottom-
up manner. Extracted Keywords were grouped under higher categories
to make categories more informative and to reduce number of similar
categories. We built the ecosystem classification scheme by extracting
the types and application domains of the studied ecosystems. We built
the classification scheme for KPI practice by extracting KPI assessment
objectives, entities and attributes used for measuring the KPI.
The keywords were extracted from the papers’ titles, keywords, and
abstracts. When the quality of an abstract was too poor, we used the
main body of the paper to identify the keywords. Similarly, as most of
the papers did not included sufficient information about entities and
attributes measured with KPI inside the abstract, we used the main body
of the papers for keyword identification. The keywords obtained from
extraction were then combined and clustered to build the categories
used for mapping the papers. The clustering of measurement attributes
was aligned with the categories described in ISO/IEC FDIS 25010 as
far as applicable.
To answer RQ2, we used a pre-defined classification scheme (Wieringa
et al., 2006) that was used by earlier systematic mapping studies
(Petersen et al., 2008). It classifies research types into validation

KPIs for Software Ecosystem: A Systematic Mapping Study

31

research, evaluation research, solution proposals, philosophical papers,
opinion papers, and experience papers.

 (iv) Systematic mapping of the papers. When the classification
scheme was in place, the selected papers were sorted into the
classification scheme. The classifications were then calculated the
frequencies of publications for each category.
To answer RQ1 and RQ2 we reported the frequencies of the selected
papers for the categories in the dimensions of ecosystems types and
application domains, respectively in the dimensions of research type
and research contributes type. We used x-y scatterplots with bubbles in
category intersections to visualize the kinds of ecosystems that were
studied. The size of a bubble is depicted proportional to the number of
papers that are in the pair of categories that correspond to the bubble
coordinates. The visualized frequencies make it possible to see which
categories have been emphasized in past research and which categories
received little or no attention.
To answer RQ3, we first described the categories identified when
building the classification scheme and how these categories were
expressed in the selected papers. This description resulted in a
dictionary for interpreting the scatterplots used for describing how
SECO KPI are used in relation to these objectives. We again used x-y
scatterplots for showing the frequency of pairs of categories. These
pairs allowed us to describe the attributes measured for each type of
ecosystem entity, the measurements used in relation to the SECO
objectives, and how KPI are obtained for various kinds of entities found
in a SECO.

2.2.3 Threats to Validity
This section analyzes the threats to validity for the taxonomies of
construct, reliability, internal and external validity.
Construct validity reflects whether the papers included in the study
reflect the SECO KPI phenomenon that was intended to be researched.
The search string was constructed in an inclusive manner so that it
captured the wide variety of software-related ecosystems and the many
different names given to key performance indicators. The common
databases, used for software and management-related literature
research, were used to find papers. Only after this inclusive process,
manual screening was performed to exclude papers not related to the
research objectives. The list of included papers was then validated
against two systematic studies on software ecosystem (Barbosa &
Alves, 2011; Manikas & Hansen, 2013b) and found that the review
covers all relevant papers.

Chapter 2

32

Reliability validity refers to the repeatability of the study for other
researchers. The study applied a defined search string, used
deterministic databases, and followed a step-by-step procedure that can
be easily replicated. The stated inclusion and exclusion criteria were
systematically applied. Reliability of the classification was achieved by
seeking consensus among multiple researchers.
Internal validity treats refers to problems in the analysis of the data.
These threats are small, since only descriptive statistics were used.
External validity concerns the ability to generalize from this study.
Generalization is not an aim of a systematic mapping study as only one
state of research is analyzed and the relevant body of research
completely covered. In particular, the study results about the use of
SECO KPI, reflects the practices studied in SECO KPI research and not
SECO KPI practice performed in general.

2.3 Results: Ecosystem KPI Research

The database search resulted in a total of 262 papers, including 46
duplicates. After screening and exclusion, 34 papers remained and were
included in the study. These selected papers were published from 2004
onwards. This section gives an overview of the research described in the
selected papers. Appendix A lists the selected papers.

2.3.1 Kinds of Ecosystems
To answer RQ1, Figure 2-1 gives an overview over the ecosystems that
our study found KPI research for. The number embedded in a bubble
indicates how many papers were devoted to a given combination of
ecosystem type and application domain (multiple classifications
possible). Empty cells indicate that no corresponding study was found.
The number on the category label indicates the total number of papers
in that category.
Most of the papers used the term software ecosystem to characterize the
studied ecosystems. Special kinds of ecosystems were cloud, service,
mobile apps, and open source software ecosystems. Less frequent were
digital ecosystems with 44% of the papers. They refer to the use of IT to
enable collaboration and knowledge exchange (Boley & Chang, 2007).
The papers addressed a variety of application domains. Most common
were telecommunications, business management and software
development. None of the remaining application domains was
addressed by more than one or two papers. Thus research is rather
scattered, and the specifics of the various application domains only little
understood.

KPIs for Software Ecosystem: A Systematic Mapping Study

33

Figure 2-1: Kinds of ecosystems that were studied with KPI research. The label

“software ecosystem” refers to those that are not considered a digital ecosystem (see
main text).

2.3.2 Types of Research
To answer RQ2, Figure 2-2 presents a map of the kind of research
performed on KPI in software-related ecosystems. Papers with multiple
research types and contributions were classified for each combination of
research type and contribution they presented.

Figure 2-2: Map of research on SECO KPI and type of contributions.

Experience report papers describe experiences in working with SECO
KPI and usually describe unsolved problems. Opinion papers discuss
opinions of the papers’ authors. Conceptual proposal papers sketch new
conceptual perspectives related to SECO KPI. This category renamed
philosophical papers category (described in iii of section 2.2) to fit the
SECO KPI study. Solution proposal papers propose new techniques or
improve existing techniques using a small example or a good
argumentation. Validation papers investigate novel solutions that had
not been implemented in practice (e.g. experiment, lab working).
Evaluation papers report on empirical or formal studies performed to
implement a solution or evaluate the implementation.

Chapter 2

34

Metric papers describe KPI for SECO. Model papers describe
relationships between KPI. Method papers describe approaches for
working with SECO KPI. Finally, tool papers describe support for work
with SECO KPI.
Most research was found in the categories of validation and evaluation.
Research contributed with metrics, models, or methods. For example,
R17 proposes a model that explains how health can be measured with
relevant indicators (conceptual proposal, model) and validates that
model with a questionnaire (validation, model). R14 proposes a method
for assessing services based on Quality of Service indicators (solution,
method). R19 evaluates factors that affect successful selling in e-
markets (metric, evaluation). No paper was an experience report or an
opinion paper. No paper contributed with any tool.

2.4 Results: Researched KPI Practice

The papers included in this study describe the use of KPI by a platform
owner for achieving objectives with the ecosystem that was enabled by
the ecosystem platform. This section gives an overview of these
objectives and the KPI that were used.

2.4.1 Ecosystem Objectives Supported by KPI
KPI were used to enable or achieve a variety of objectives. Platform
owners aimed, at improving business, at improving the
interconnectedness between actors, at growing the ecosystem, at
improving quality of ecosystem, product, or services performed within
the ecosystem, and at enabling sustainability of the ecosystem (answer
RQ3):
Business improvement. Research has been performed on how to
improve business at the ecosystem level. The studied business
improvements concerned the perspectives of ecosystem activity and of
commercial success. Ecosystem activity related to the level of activity
of participating actors, encouragement to participate in the ecosystem,
and the transaction volume. Commercial success related to sales
success, innovativeness and competitiveness of the participating actors,
and the cost of the network that enables the ecosystem. The activity and
commercial perspectives were mixed in the papers, thus could not be
separated in the analysis of the literature.
Interconnectedness improvement. Research has been performed on how
to improve interaction in an ecosystem, for example to reduce cost,
improve predictability of services that are provided in the ecosystem,
and manage trust. Interaction improvement was studied between
individual actors and between whole networks contained in the

KPIs for Software Ecosystem: A Systematic Mapping Study

35

ecosystem. The research differed in terms of lifecycle stage of an
interaction and covered supplier availability, discovery, ranking and
selection, the resulting connectivity, interaction evaluation, and the
impact of the interaction on the actors that participated in it. Interaction
improvement was not always an end in itself, but was considered
essential for generating business activity and sustainability of the
ecosystem.
Growth and stability. Research has been performed on how to manage
growth and stability of the ecosystem. Growth and stability were seen as
two factors that need to be managed jointly. During growth flexibility
and controllability need to be maintained. During stability, a continuous
co-revolution must happen. Growth and stability again are not ends in
themselves, but thus contribute to sustainability and survival of the
ecosystem.
Quality improvement. Research has been performed on how to manage
quality of ecosystems. In particular, performance, usability, security,
data reliability, extendibility, transparence, trustworthiness, and quality-
in-use were investigated. Quality management was sometimes presented
as an ends in itself, for example by allowing comparison among
multiple ecosystems, enabling diagnosis, improving decision-making,
and achieving long-term usage of services. At the same time, however,
quality management was considered to be a means to encourage
adoption and growth, improve business performance, and achieve
sustainability.
Enable sustainability. Research has been performed on how to sustain
an ecosystem. Two angles were taken: self-organization and resource
consumption. Self-organization was approached through continuous
rejuvenation of the ecosystem. Resource consumption was studied in
relation of electrical energy. Throughout all papers found in this
category, sustainability was considered to be desirable ends for software
ecosystems.

2.4.2 KPI: Measured Entities
The included papers describe measurements applied to the ecosystem as
a whole or the parts the ecosystem consists of: actor, artifact, service,
relationship, transaction and network.
Actors. Actors were measured and characterized as follows. They were
human or artificial. Examples of human or legal actors were sellers and
developers that provide products to buyers or groups of organizations
and firms. Examples of artificial actors were nodes in a
telecommunication network. An actor engages in transactions in an
ecosystem and builds relationships to other actors or artifacts. The
transactions the seller engages in generate profit and revenue for the

Chapter 2

36

cost the seller is willing to take. Effective actors have knowledge about
other actors or the network and has good interestingness and reputation
for other actors. Actors are also considered to be sources and sinks of
data and have differing ranges for data transmission. Performance of
individuals and groups in terms of fulfilled tasks and decisions as well
as performance of firms and organizations in terms of profits are
measured.
Artifacts. Artifacts such as software, codes, plugins, books, music, or
data were measured and characterized as follows. Artifacts had a
location in the ecosystem. They evolve, may have reputation and
popularity, and exposed their consumers to vulnerability.
Services. Services were measured and characterized as follows. Services
consume energy and other resources. Services have quality attributes
such as quality of service, security, compliance, and reputation.
Metadata and service level agreements are used to specify the services.
The services are not fixed but evolve: services emerge, change, and get
extinct. A special service was provided by the platform that laid the
fundament for the ecosystem. It was characterized in terms of attributes
like stability, documentation, portability, and openness.
Relationship. Relationships were measured and characterized as
follows. Actors enter relationships with other actors, artifacts, or
services. A relationship connects two or more such entities. Examples
of relationships were business connections and telecommunication
communication links. A relationship may be transparent and express a
trust value of the connected entities. A relationship is the basis for
transactions, thus is used for advertising and building alliances. The
transaction, however, is constrained by cost and quality of the
relationship.
Transactions. Transactions were measured and characterized as follows.
Examples of transactions are sales of services to customers, server
requests, and commits of code files made by developers. They are
initiated with an offer that is measured in terms of attributes like price
and quantity. Transactions also have a price and quantity. Other
attributes include time to negotiate the transaction, time to complete,
energy consumption, transmission rate, and buyer satisfaction.
Network. Networks were considered as sets of entities and relationships
that were part of a whole ecosystem. Examples were local or
application-specific networks. Networks were characterized as follows.
Networks were vulnerable to security threats such as data availability,
integrity, authentication, and authorization. Networks differed in the
node density, degree of collaboration, provisioning cost, and hit rate for
artifacts.

KPIs for Software Ecosystem: A Systematic Mapping Study

37

Ecosystem. Full ecosystems were characterized as follows. They have
quality attributes like size, performance, security and energy
consumption that can also characterize networks contained in an
ecosystem. In addition, ecosystems exhibited lifelines, diversity,
stability, transparency, healthiness, and sustainability.

This section and next section collaboratively provide answer for RQ4.
The map in the left part of Figure 2-3 shows the entities that were
studied in relation to the ecosystem objectives. Most research studied
the measurement of the overall ecosystem to enable quality or business
improvement. For example, R17 describes how performance of the
ecosystem affected user satisfaction, and R13 shows how analytics
applied to the ecosystem can be used to improve business. Considerable
research was also devoted to improving the interconnectedness of the
ecosystem, where attributes of the products and services played an
important role and also to the role of platform measurements to grow
the ecosystem and improve quality. For example, R6 described how to
use a service similarity measurement was used to improve ecosystem
connectivity. R2 described how growth, diversity, and entropy
measurements of a SOA platform were used to increase growth. R4
described how communication quality measurements were used to
improve the quality of a telecommunication ecosystem.
The map also shows areas where no research was published. For
example no research studied the role of network measurements for
objectives other than sustainability and quality improvement.

Figure 2-3: Map of measured entities and measurement attributes in relation to

ecosystem objectives.

2.4.3 KPI: Measurement Attributes
To make the state and evolution of the ecosystem and of its elements
visible, a broad variety of attributes were measured.

Chapter 2

38

The following attributes categories emerged when clustering the
attributes described in the included papers. Figure 2-4 shows how
classes of quality attributes were merged toward new categories. The
size category includes attributes to measure size and growth. Diversity
includes attributes to measure heterogeneity and openness for such
heterogeneity. Financial includes attributes to measure economic
aspects such as investment, cost, and price. Satisfaction includes
attributes to measure satisfaction and the related concepts of suitability,
interestingness, learnability, usability, accessibility, acceptability, trust,
and reputation. Performance includes attributes to measure
performance, including resource utilization, efficiency, accuracy, and
effectiveness. Freedom from risk includes attributes to measure the
ability to avoid or mitigate risks and includes the related concerns of
security, reliability, maturity, availability, and other related guarantees.
Compatibility includes attributes to measure the degree to which an
entity can perform well in a given context, interoperate or exchange
information with other entities, and be ported from one context to
another one. Maintainability includes attributes to measure flexibility,
respectively the ability to be changed.
The right part of Figure 2-3 gives an overview of the attributes referred
to by KPI. Most research studied measurements of satisfaction,
typically to improve business or interconnectedness. An example of
such research is R13 that describes the use of seller reputation to
improve business. To support quality improvement, all measurement
attributes that relate to quality were included in at least one research
paper, except for maintainability and size. Similarly, size measurements
did not play any role other than for growth and stability.

• Diversity
• Heterogeneity
• Openness

• Satisfaction
• Satisfaction
• Suitability
• Interestingness
• Learnability
• Usability
• Accessibility
• Acceptability
• Trust
• Reputation.

• Performance
• Performance
• Resource

utilization
• Efficiency
• Accuracy
• Effectiveness

• Financial
• Investment
• Cost
• Price

• Size
• Size
• Growth

• Freedom from risk
• Risk mitigation
• Security
• Reliability
• Maturity
• Availability
• Guarantees.

• Compatibility
• Interoperability
• Exchangeability

• Maintainability
• Flexibility
• Changeability

Figure 2-4: Merging classifications of measurement attributes

KPIs for Software Ecosystem: A Systematic Mapping Study

39

The left part of Figure 2-5 shows how the ecosystem elements were
measured. Satisfaction was a common attribute that was measured for
any entity except for rules. This shows that a same attribute can be
measured or analyzed for different ecosystem entities. Also it is
revealed that similar measurement attributes might be collaborating to
measure different ecosystem elements. As an example CCCI
(correlation, commitment, clarity and importance) measurable attributes
were used to measure trust as well as reliability.
The overall ecosystem and actors were the most comprehensively
measured or analyzed entities, with a special focus on satisfaction,
freedom from risks and performance. Some examples of such
satisfaction measurements are provided by R13 that measured usage
and acceptability of an ecosystem. The service followed with the next
largest variety of measurements. R2, for example, measured entropy
and diversity to characterize platform complexity. Only narrow sets of
measurement attributes were applied to the business partner,
interactions, and business.

Figure 2-5: Map of measurement attributes in relation to the measured entities.

2.5 Discussion

The study provides a classification of KPI relevant papers in
understanding researches, relationship with the practice, and assessment
of research outcomes. This classification contributes to taxonomy,

Chapter 2

40

which can help for closer examination of the ecosystem or platform
owner objectives, making them more recognizable in designing KPI.
New KPI can be extracted for an ecosystem using this taxonomy, and
existing KPIs can be extended or restructured applying the generic
structure of the taxonomy.
The literature map indicates that KPI for software-based ecosystems is a
thin area with work at all maturity levels. Journal, conference, and
workshop papers exist. However, the number of publications is not
sufficient, and many application domains for ecosystems addressed with
just one or two papers. Although formulation of KPI might be domain
dependent and similarity of objectives is not the only factor to select a
KPI, however due to insufficient study it is difficult to state whether
characteristics of a domain, for example regulation of healthcare, affects
the KPI of the ecosystem that targets that domain.
The included research on ecosystem KPI mostly addresses ecosystem
measurements or measurements of satisfaction, performance and
freedom from risks. Measurements other than satisfaction that are
applied on elements contained in the ecosystem are comparatively little
researched. A broader understanding of KPI would increase a platform
owner’s flexibility in measuring, analyzing, and using KPI for decision-
support. The understanding of a greater variety of KPI would also
contribute to increased transparency of status, evolution, and other
aspects of the ecosystem.

2.6 Conclusions

The here presented study gives an overview of literature on the use of
KPI for software-based ecosystems. A systematic mapping
methodology was followed and applied to 34 included studies published
from 2004 onwards.
To respond to RQ1 and RQ2, research was broad but thin. Two major
kinds of ecosystems were researched: software ecosystems and digital
ecosystems. Many application domains were addressed, but most of
them with one or two papers only. The published research was mature
with journal, conference, and workshop papers that covered metrics,
models, and methods. In response to RQ3 and RQ4, KPI research was
skewed. Most research studied ecosystem KPI for improving the
interconnectedness between individual actors and subsystems of the
ecosystem. Overall, most KPI were about satisfaction, performance and
freedom from risks measures.
The results of the mapping study indicate that more research is needed
to better understanding of KPI for software-based ecosystems. In
particular, a deeper understanding of how the application domain affects

KPIs for Software Ecosystem: A Systematic Mapping Study

41

an ecosystem’s KPI is needed. Also, an important research opportunity
is the identification, analysis, and evaluation of KPI. Such research
could make the work with KPI more flexible, because a greater variety
of KPI would be known and available for the practitioner to use.

 Quality Requirements CHAPTER 3
Elicitation based on Inquiry of
Quality-Impact Relationship

Abstract

Quality requirements, an important class of non-functional
requirements, are inherently difficult to elicit. Particularly challenging is
the definition of good-enough quality. The problem cannot be avoided
though, because hitting the right quality level is critical. Too little
quality leads to churn for the software product. Excessive quality
generates unnecessary cost and drains the resources of the operating
platform. To address this problem, we propose to elicit the specific
relationships between software quality levels and their impacts for
given quality attributes and stakeholders. An understanding of each
such relationship can then be used to specify the right level of quality
by deciding about acceptable impacts. The Quality-Impact relationships
can be used to design and dimension a software system appropriately
and, in a second step, to develop service level agreements that allow re-
use of the obtained knowledge of good-enough quality. This paper
describes an approach to elicit such quality–impact relationships and to
use them for specifying quality requirements. The approach has been
applied with user representatives in requirements workshops and used
for determining Quality of Service (QoS) requirements based the
involved users’ Quality of Experience (QoE). The paper describes the
approach in detail and reports early experiences from applying the
approach.

Keywords

Requirement elicitation, quality attributes, non-functional requirements,
quality of experience (QoE), quality of service (QoS)

Chapter 3

44

3.1 Introduction

Quality requirements are an important class of non-functional
requirements (Glinz, 2007). They concern software system attributes
such as functional suitability, performance, reliability, usability,
security, and portability that are important for achieving stakeholder
goals (Boegh, 2008). The satisfaction of these quality attributes
determines whether the software system meets the goals of its
stakeholders or whether the system has a negative impact for these
stakeholders (Chung, Nixon, Yu, & Mylopoulos, 2000; Haigh, 2010).
Meeting the right level of quality is important to balance benefits and
cost (Regnell, Berntsson Svensson, & Olsson, 2008). The quality of a
software system needs to be at least as good as to make the software
useful and competitive, but should not be excessive to avoid cost and
unnecessary use of resources. Insufficient quality leads to
disappointment and consequent churn when stakeholders decide to
abandon the software solution and adopt alternatives instead (Kilkki,
2008). Excessive quality may lead to an unnecessarily expensive design
of the software system (Bass, Clements, & Kazman, 2012), to
unnecessary consumption of resources needed for operating the system
(Jung, Hiltunen, Joshi, Schlichting, & Pu, 2010), and to trade-offs
where other quality attributes suffer (Braz, Seffa, & M'Raihi, 2007).
To address the problem of finding the level of good-enough quality, the
relationship between software quality and the impacts of such quality
for the stakeholders of the software system needs to be understood. As
demonstrated for the Quality of Service (QoS) of a telecommunication
network and the Quality of Experience (QoE) of the network users, a
quality–impact relationship can be developed empirically by setting
quality levels of a given quality attribute and measuring the reaction of
the stakeholders that were exposed to these quality levels (Fiedler et al.,
2010).
This paper describes how to use quality–impact analysis for eliciting
requirements about good-enough quality of a software system. The
proposed method guides the elicitation of the quality–impact
relationships and explains how to use the gained insights to specify
quality requirements. The method delivers empirical evidence for a
specific software system that is more reliable than generic expert
opinion. The evidence pertains to the features that were investigated and
the stakeholders that were participating in the requirements inquiry, thus
is adequate and relevant for decision-making about that software
system’s quality requirements.
The paper describes the proposed quality–impact elicitation method in
depth. It gives details about the key ideas of the method and explains

Quality Requirements Elicitation based on Inquiry of Quality-Impact …

45

how to tailor the method depending on the investigated quality
characteristics, the stakeholder goals impacted by these quality
characteristics, and the instruments that the investigator is able to apply.
The paper provides an example of how the method is applied in practice
by reporting about its use in a real-world software development project.
The paper is structured as follows. Section II reviews existing work and
motivates quality requirements elicitation based on quality–impact
relationship inquiry. Section III describes the method in-depth. Section
IV describes how the method is applied and reports the lessons-learned
from such method application. Section V compares the method and the
obtained results with related work. Section VI concludes.

3.2 Related Work

According to ISO/IEC FDIS 25010, the quality of a system is the
degree to which the system satisfies the needs of its stakeholders. The
determination of whether a system exhibits the desired quality
characteristics is not straightforward, however. In contrast to functional
requirements, many quality requirements do not have a sharp boundary
between satisfaction and non-satisfaction. Instead, they are gradually
satisfied (Glinz, 2005), thus called soft requirements (Irvine & Levin,
2000).
The softness characteristic of implies that the right level of desired
requirements quality needs to be identified during requirements
engineering (Regnell et al., 2008). Each such quality level has its own
specific costs and benefits. High quality levels are considered more
costly than low quality levels because more expensive designs or
approaches to provision of the software service need to be chosen to
implement the requirement. In a similar vein, increase of the quality
level implies increase of the benefits generated by the requirement. A
product that is considered useless because of too low quality becomes
useful or even competitive with increased quality. Too much quality,
however, is considered excessive thus not adding any value for
stakeholders despite quality improvement. The trade-off between cost
and value impacts is a basis to determine the desired quality level and
specify the requirement in a quantified manner (Gilb, 2005; Jacobs,
1999).
Goal models have been proposed to elicit quality requirements (Antón
& Potts, 1998; Chung et al., 2000). Such models allow identification of
needs for improving, increasing, or keeping the level of the quality
characteristics of a software. To support systematic identification of
goals and qualities within a given domain, ontologies have been
developed and used to support requirements elicitation (Souag, Salinesi,

Chapter 3

46

& Wattiau, 2012; Wang et al., 2010). The means-ends relationships that
are an inherent part of a goal model make the impact of such a quality
requirements explicit (Cysneiros & Sampaio do Prado Leite, 2004;
Herrmann & Paech, 2008). The goals that are enabled by such a
decision are used as a rationale that motivates the quality requirement.
Unfortunately, goal models are of limited help eliciting appropriate
levels of quality. Goal models help identifying the quality
characteristics that are perceived relevant by stakeholders, and the
means-ends relationships connect these qualities to the impact that is
desired by the stakeholders. However, they do not guide a requirements
engineer in how much of a desired quality is good enough. One of the
key limitation is that the goal models do not relate a given quality level
to a given level of impact beyond the coarse-grained levels of a
requirement being denied, weakly denied, undecided, weakly satisfied,
and satisficed . In addition, the application of goal models does not
deliver the information needed to quantify a quality requirement, thus
make its satisfaction measurable with attributes such as scale and meter
(Jacobs, 1999).
Several supporting elicitation methods have been proposed for
requirements elicitation (Pohl & Rupp, 2011). These include the use of
questionnaires, interviews, workshops, creativity methods, storyboards,
use cases, role-plays, and prototyping. Review of prototypes has been
particularly effective in identifying usability concerns and refining user
interaction design to reach user acceptance (Rettig, 1994). The
construction of such prototypes allows a development team to capture
assumptions about desired software characteristics and to validate these
assumptions, for example by reviewing them as implementation
proposals with concerned stakeholders (Fricker & Glinz, 2010; Fricker,
Gorschek, Byman, & Schmidle, 2010).
The supporting elicitation methods provide limited support for the
determination of good-enough quality levels because of their generality.
Any question can be asked in a questionnaire or interview, any topic
explored in a workshop, and a multitude of design decisions be captured
with storyboards, use cases, role-play, and prototypes. Guidelines that
have been proposed to identify quality requirements (Hassenzahl,
Wessler, & Hamborg, 2001; Kusters, van Solingen, & Trienekens,
1999) target the discovery of quality, but do not help in determining
measurable levels of quality. The requirements engineer is thus left with
his intuition or experience for asking the right questions (Doerr,
Kerkow, Koenig, Olsson, & Suzuki, 2005). The use of experience,
however, is risky as the levels for good-enough quality may change
between different software products and product-usage contexts.

Quality Requirements Elicitation based on Inquiry of Quality-Impact …

47

To enable requirements engineers to determine appropriate levels of
good-enough system quality, we were studying the field of
telecommunication. In particular we were looking for approaches that
allow the requirements engineer and the system stakeholders understand
the meaning of a given level of quality, for example in terms of how the
quality level affects the degree of stakeholder satisfaction. In the field of
telecommunication, substantial work has been performed for
understanding how to measure degrees system quality and how a given
degree of system quality affects user attitude (Fiedler et al., 2010).
For a telecommunication system, Quality of Service (QoS)
requirements are stated that concern system performance, availability,
and capacity (Wang et al., 2010). Often these requirements are agreed in
a service level agreements (SLA) between the system customers and the
supplier (Kittlaus & Clough, 2009). User satisfaction is expressed as
Quality of Experience (QoE) and refers to the “degree of delight or
annoyance of the user of an application or service” (Le Callet et al.,
2012). It has been shown that a system’s Quality of Service affects the
user’s Quality of experience (Fiedler et al., 2010). Too little user delight
and too much user annoyance leads to churn, thus users that try to look
for alternatives and try to avoid using the system under consideration.
The knowledge of how QoS is related to QoE has not been translated
into requirements engineering methodology yet. In particular, it is
unclear how to exploit the relationship between QoS levels with QoE
levels in the inquiry of software systems requirements. Also needed is
an explanation of how to apply the specifics of the QoS-QoE
relationship on the determination of good-enough quality for any
system quality attribute and for any important stakeholder need that is
impacted by the possible quality levels.

3.3 Quality-Impact Inquiry

This paper proposes a method that we call Quality-Impact Inquiry to
address the so far unsatisfactorily solved problem of determining
adequate levels of quality. As required from a solution proposal, we
have explained why a novel method was needed, specify the principles
and steps of the method, and describe how to apply it (Wieringa et al.,
2006). To demonstrate that the method is sound, we go a step further
than required from a solution paper and report about a preliminary
validation that we performed with a real-world software development
project. The paper describes the method in sufficient depth to enable
replication in practice and further validation research.
 The Quality-Impact Inquiry method is based on the principles outlined
in our earlier work about the generic relationships between Quality of

Chapter 3

48

Service and Quality of Experience (Fiedler et al., 2010). These
principles have been translated into a software requirements engineering
context by integrating it into an inquiry-based requirements analysis
process (Potts, Takahashi, & Antón, 1994) and combined with
prototyping, questionnaires, and workshops as supporting methods for
collection of quality measurements and stakeholder opinions. During
the workshop, stakeholders are exposed to requirements engineer-
defined quality that has been implemented in the prototype and
questioned about their perceived quality impact. The correlation
between quality measurement and stakeholder opinion is analyzed and
used as decision-support to determine and then specify good-enough
requirements quality.
The Quality-Impact Inquiry method adapts the inquiry cycle of
requirement analysis (Potts et al., 1994) as follows: the documentation
phase is adapted to implement a prototype using a set of accepted
requirements described the desired system and collects quality attributes
during stakeholder actions. The three elements of requirement
discussion phase including questions, answers and reasons are
supported by the questionnaire elicitation. Finally the results from the
former phases contribute to either freeze or change requirements in the
evolution phase.
Figure 3.1 gives an overview of the Quality-Impact Inquiry process.
The remainder of this section describes the generic Quality-Impact
Inquiry method and how the method may be tailored. The ensuing
section describes how the method has been applied in real-world
projects and reports about early lessons-learned.

3.3.1 Inquiry Process
Figure 3.1 gives an overview over the process that characterizes the
Quality-Impact Inquiry method. The process contains four steps:
preparation, measurement, analysis and decision-making. It is applied
iteratively until enough evidence has been collected to decide about
what good-enough quality should be for a quality attribute under
investigation.
1) Preparation: During the first step, Preparation, the materials needed
for allowing stakeholders to experience the quality characteristics under
investigation are prepared. The work includes the preparation and
documentation of a prototype, the formulation of a questionnaire, the
recruitment of stakeholders for participation in a workshop, and the
scheduling of the workshop.
In the proposed method, quality impact is measured subjectively
through a questionnaire. The quality impact is also affected by a real
value of quality that is measured objectively (Brooks & Hestnes, 2010)

Quality Requirements Elicitation based on Inquiry of Quality-Impact …

49

and automatically using a prototype. Therefore a list of valid quality
requirements are identified from SRS document that is relevant to one
feature or a group of features (f) and presented as pairs of quality
attribute and value:

Q = { (qatt , qval) | f } (1)

As an example in SRS, a non-functional requirement can be stated as
“response time should be less that 2 s”. “Response time” is the attribute
and 2 s is the value.
The software might be in a preliminary release (i.e. pre-alpha, alpha and
beta testing), a candidate release close to a final product/service, or even
a released product ready for an evolution. Preparation of artifacts
including a prototype from a software feature(s) and a questionnaire
about their quality is the pre-requisite to run the method. The
stakeholders experience the software and then answer the questionnaire.
Data that are collected from the software use and the questionnaire are
analyzed to evolve quality requirements in the software specification
document (SRS) if needed.
Based on the quality attributes, the prototype is tailored for the
feature(s) f to support measurement of Q. The questionnaire will be
tailored using Q to collect quality impacts of feature(s) f relevant to user
list U:

U = {u} (2)

Then, scenarios for data collection, and software guidelines to be
followed by users are prepared in this step. Translating the

Figure 3.1: Quality-Impact Inquiry Method

Chapter 3

50

questionnaire to the user’s mother tongue is another action that might be
required.
2) Measurement: During the second step, Measurement, a workshop is
performed with the aim of collecting quality measurements and user
feedback. During the workshop the stakeholders experience
predetermined qualities by utilizing the prototype according to a pre-
defined script. During the use of the prototype measurements are taken
about the quality that the stakeholders experienced. After the use of the
prototype, the prepared questionnaire is administered to collect
stakeholder opinions about the impacts of the perceived quality.
While the users are using the application through clients such as a
smartphone or a PC, quality values qmsr (i.e. qmsr is a qval relevant to qatt
for feature(s) f) are quantified by function m, automatically using
analytical tools, server log generators or piece of codes embedded in the
software.

qmsr = OP(m(qatt | u, f)) | OP ∈ { MIN or MAX } (3)

The function captures the worst value of measured quality attributes in
different actions of a user for the given feature(s) f, depending on
whether the quality has a success or failure measure characteristic
(Fiedler & Hoßfeld, 2010). For a success measure such as availability,
the higher value of the quality attribute shows better quality but for a
failure measure such as response time, a higher value of the quality
attribute shows worst quality. Therefore minimum or maximum value
of each case would be the candidate value for measured quality.
Another source of measurement is the questionnaire designed to
translate the quality impacts qimp (i.e. qimp is a qval relevant to qatt for
feature f) into scored values provided by users. In the questionnaire,
users are typically asked to provide ratings,

qimp = s(qatt | u , f) (4)

and rationales in forms of comments that explain their ratings:

comm = c(qatt | u , f) (5)

Furthermore, the questionnaire asks users to rate “quality in use”
attributes such as satisfaction as a sub list of quality attributes:

QinUse ⊂ Q (6)

The quality impact is translated into a discrete value that is scaled using
scores such as Mean Opinion Score (MOS) (ITU-T, 2003).
3) Analysis: During the third step, Analysis, the quality measurements
are correlated with the stakeholder opinions about quality impact. This
step involves application of statistical analyses based on data that has

Quality Requirements Elicitation based on Inquiry of Quality-Impact …

51

been collected during the measurement step in the ongoing and previous
Quality-Impact Inquiry iterations. The analysis can also be enhanced
through a-priori knowledge of the generic nature of the studied Quality-
Impact relationships.
The relation between the measured quality (qmsr) and quality impact
(qimp) will be identified through a regression analysis, similar to
correlation analysis between QoE and QoS (H.-J. Kim et al., 2008;
Minhas & Fiedler, 2013). The regression function is calculated for a
feature f and quality attribute qatt:

 q̂imp(qmsr) = r(qmsr | f , qatt) (7)

Different regression functions for the relationship including linear,
logarithmic, exponential and power have potential to be candidate,
however the analysis compares the regression function and matches the
best one.
Then, an estimation of quality value for a given quality impact is
calculated by the inverse function of the regression model:

 q̂msr(qimp) = r-1(qimp | f , qatt) (8)

The output of the analysis proposes a list of quality values for different
quality impacts including maximum quality impact.
If the Quality-Impact analysis does not provide enough data for a
mature analysis, some changes on the prototype are applied to change
the quality values artificially. The looped arrow from analysis box to
prototyping box in Figure 3.1 provides possibilities to achieve enough
data for investigating impact changes and perform more reliable
analysis than the analysis of less data points.
4) Decision-Making: During the fourth step, Decision-Making, the
analysis results are used to decide about acceptable and desired levels of
quality of the investigated quality attributes. The decisions are recorded
in the software requirements specification. The step concludes with
decision-making about whether to add inquiry iterations and how the
parameters of these ensuing inquiries should be adapted for best
improving the knowledge about good-enough quality.
The decision-making process selects suitable quality value from the
evidences and decides whether to evolve the value for the relevant
quality requirement in the SRS document.
This process identifies maximum applicable quality impact considering
technical feasibility, product strategies, and limitation of resources to
achieve the relevant quality value, and then applies the decision making
function.

Chapter 3

52

Decision-making is a function of parameters including estimated quality
value for maximum impact (q̂msr) of a quality attribute, the value of
relevant non-functional requirement (qSRS), the list of rationale for the
quality attribute rating (comm) beside all quality-in-use ratings (QinUse),
to interpret whether the current quality fulfills the users acceptance.

qnew = { g(q̂msr , qSRS , comm , QinUse | f , qatt) }The thesis also
contribute to a holistic approach (9)

This function defines a new value for the quality attribute. The decision-
making will be performed for all quality attributes in Q.

3.3.2 Method Tailoring
There are a wide variety of variation points to adapt the generic Quality-
Impact Inquiry process. The variations are needed to be flexible enough
to adapt the process to specific requirements engineering constellations.
Table 3-1 gives an overview.

Table 3-1. An overview of variations

Variation
Point Variants

Software
Features

Stakeholders may be exposed to different
features. Quality requirements may be specific
to features or the impact of quality levels be
perceived differently depending on the feature.

Quality
Attributes

Stakeholders may be exposed to different
quality attributes. Each feature or application
may have its own set of prioritized quality
attributes.

Quality
Levels

For the selected quality attributes, different
quality levels may be investigated. The
selection of the quality level should be based
on information need and be guided by
statistical analysis methodology.

Stakeholder
Sampling

Different individuals may be invited for
participation in the inquiry workshops. The
selected stakeholders should be as
representative as possible.

Impact
Attributes

Stakeholders may be questioned about
different quality impacts. Each application or
feature may aim at achieving its own specific
impacts.

Measurements Different measurements may be selected to
record quality levels and stakeholder impacts.

Prototyping
Approaches

The simulation of different quality
characteristics may require different
approaches of building the quality-simulating
prototype.

Quality Requirements Elicitation based on Inquiry of Quality-Impact …

53

Variation
Point Variants

Impact
Function

Different impact functions may be chosen the
represent the relationship between a given
quality attribute and its impact. We were using
linear and exponential functions so far.

3.4 Real-World Example of Method Application

3.4.1 Example Application
To demonstrate how to implement the method in practical situations, we
present here the results and lessons-learned of an early validation that
we have done in a real-world project. We applied the method for a
Diabetes Smartphone Application that will be used by diabetes patients
to take blood glucose measurements, to plan insulin injection, and to
send the collected observation history to a diabetes specialist for
consultation. We evaluated the Quality-Impact relationships for the
features user authentication and observation sharing of diabetes
information.
As an input to the Quality-Impact inquiry we had used a prototype that
was instrumented with software for monitoring the timing of user
interactions. The inquiry was performed in a laboratory and with a
smart phone from the application developers with pre-loaded data. The
requirements engineer, the product manager, and selected end-users
participated in the inquiry workshop. The inquiry was performed with
one end-user at the time.

Figure 3-2: User interaction scenario with instrumented application and subsequent

answering of the quality of experience questionnaire

During the inquiry, the end-user was introduced to the tasks he to be
performed with the application, was given a short, tailored user manual,

Chapter 3

54

and then used the selected features first according to instructions and
then without help. He opened the application, selected the data he
wanted to share with his clinician, authenticated himself, and submitted
the data. Then the authentication service requested username and
password. When authenticated, the data was sent to the application
server in the hospital. After the guided and unguided experiences were
concluded, the end-user filled out the quality of experience
questionnaire. Figure 3-2 gives an impression of the setup.
The Quality-Impact inquiry processes was implemented for the
Diabetes Smartphone Application as follows:
1) Preparation: The requirements engineer extracted relevant quality
requirements from the software requirement specification document.
Based on these extracts he instrumented the software with a time-stamp
logger.
The requirements engineer created a short guideline to assist the end-
user in using the application. It described the features to be evaluated
and how the features should be used.
Based on the extracted quality requirements, the requirements engineer
created a quality of experience questionnaire with generic questions
about the experience, about the features and product, and about the
perceived quality. For the Diabetes Smartphone Application, the quality
questions were about performance, reliability, and availability. Figure
3-3 shows the questionnaire.
2) Measurement: The following steps describe the inquiry workshop
that was performed once for each user separately.
In the beginning of the inquiry the requirements engineer welcomed the
participants, defined the goals of the inquiry, and shared the agenda of
the meeting.
The product manager explained the feature to be used and gave
prepared guideline to the end-user.
The end-user used the application according to the instructions. He did
so twice to allow us collecting data about the learning and
knowledgeable use of the feature. The application generated logs
automatically and captured information from the user interaction (see
Figure 3-4 for an example). In all timestamp, the time from the internal
clock on smartphone was used. Log entries were created when end-user
requests are received and when application screen/data have been
displayed. The response time extracted from the example is the duration
between two time stamps taken from the starting to the ending of an
activity.

Quality Requirements Elicitation based on Inquiry of Quality-Impact …

55

The Experience

1. Please tell us the name you would give to the feature:

The Features and Product

2 Overall, how satisfied are you with the features you just have
experienced?
□ Excellent (5) □ Good (4) □ Fair (3) □ Poor (2) □ Bad (1)

Please tell us why you feel that way:

3. Overall, how good is the feature according to your opinion?

□ Exceptional □ Better than comparable products and features
□ Good-enough □ Insufficient
Please tell us why you feel that way:

4. Will you return to use the product again?
□ Yes □ No

Please tell us why you feel that way:

The Quality

5. The next question is about response time. With response time we
mean the time when you press a button until the software does what
it is supposed to do.
How do you rate the response time of the feature?
□ Excellent (5) □ Good (4) □ Fair (3) □ Poor (2) □ Bad (1)
Please tell us why you feel that way:

Figure 3-3: Questionnaire. The last question can be replicated and adapted to any
feature the requirement engineer is interested of.

After application usage, the requirements engineer provided instructions
for answering the quality of experience questionnaire. The user
answered the questionnaire accordingly. The answers that were
collected with quantitative scales provided data for calculating the
Quality-Impact relationship. The qualitative rationale that the users
gave for these values assisted us in interpreting the quantitative values.
At the end of the session, the requirements engineer debriefed the
participants and thanked them for the participation.

Chapter 3

56

Figure 3-4: Extract from the log file with timestamps and activities

3) Analysis: The filled-in questionnaires and time-stamp logs from all
end-users interactions were the inputs for the analysis process. The end-
users were satisfied with the quality as they reflected in the
questionnaire Therefore the analysis of this example did not identify
any deviation to update quality attributes. However the similar study
was conducted in our lab where users perception of response time in
downloading a webpage containing an image were collected (Shaikh,
Fiedler, & Collange, 2010). The analysis of the data distributions
concluded a close match for a regression formula on relations between
MOS and response time excluding null opinion scores:

q̂imp(qmsr) = 4.836 exp(-0.15 qmsr) (10)

Figure 3-5: Quality impact (MOS) as a function of quality value (response time(s))

Figure 3-5 plots this regression function that shows quality (qimp) as a
function of quality value (qmsr) (Shaikh et al., 2010). The response time
collected from different experiments as well as collected relevant
quality impacts will plot the Figure 3-6. Taking the reverse of this
function estimates quality value (q̂msr) as a function of quality impact
(qimp):

q̂msr (qimp) = -6.67 ln(qimp / 4.836)s (11)

Quality Requirements Elicitation based on Inquiry of Quality-Impact …

57

Figure 3-6: Quality value (Response time (s)) as a function of quality impact (MOS)

As Figure 3-6 plots the inverse regression function, shorter response
identifies the better perception of quality and user’s score. Table 3-2
estimates quality values for qimp in the range of between 3 and 4.5.
This value identifies the best threshold value for a quality attribute such
as response time that is sufficient for the user expectations.

Table 3-2. Estimated quality values for given quality impacts

Quality impact (qimp)
MOS

Estimated quality value (q̂msr) for
Response time

4.5 0.48 s

4 1.27 s

3.5 2.15 s

3 3.18 s

4) Decision making: Decision making process involves choosing a
threshold value for a quality attribute based on inputs from analysis
including an estimated quality value for response time, user experiences
and rationales, the list of quality-in-use as well as the value of response
time defined in the SRS document.
Selecting the good-enough quality level requires trade-offs between the
reaching enough user acceptance level instead of maximum level in
return for gaining technical feasibility by limited resources such as cost,
time and effort. Identifying maximum applicable user perception
(quality impact) in each analysis is the result of such trade-offs. If
quality impact 4 is recognized enough, then the estimated quality value
of 1.27s will be involved in decision making process to update SRS
with a good-enough quality value. Typically, the critical value for
quality impact is assumed to be 3. In telecommunication area, accepted
quality impact in video streaming is considered as 3.5, although the
quality impact of 4 is a good choice (Khan, Sun, Jammeh, & Ifeachor,
2010).

Chapter 3

58

3.5 Lesson learned

As shown in the example, the inquiry workshop allowed us to collect
the data necessary for analyzing the Quality-Impact relationship for
response time and quality of experience. The workshop lasted about 10
minutes per user. Data aggregation and analysis was concluded within a
few hours. Thus the method was relatively efficient. Scalability can be
achieved by working with multiple users in parallel, for example as part
of a training workshop.
From the users that participated in the inquiry workshops we received
positive feedback about the experience and about most of the questions
we asked. However, one of the users was puzzled about perceived
reliability and availability. He stated that he expected the application to
work and to be available in the laboratory situation he was invited to.
This shows that usage context affects the relevance of quality attributes.
Some quality attributes are relevant in some contexts only. We plan to
account for this feedback by extending the Quality-Impact inquiry to
prolonged pilot uses of the application in the real-world contexts of the
users.
 On little usages of the software product could not give the full
impression to users. An issue relevant to a quality attribute such as
availability might not be risen in a short period of use, this is what
reflected by the stakeholder in the example stated in section IV. To
reach more accurate data, a prolonged usage should be planned.
Not only quality attributes are identified in the proposed Quality-Impact
inquiry method, there might be some proposals for updating functional
requirements extractable from the users’ comments given in the
questionnaire. As an example, if the end-user could not find how to
submit the blood glucose data, this could be reflected in the users’
perception rating as well as provided rationale.
Training before and during the workshop provides knowledge and skills
to mitigate the threats of biasing the user perception that occurred due to
misuse of the feature. Distractions during the workshop should be
removed to boost concentration of users in expressing their real
unbiased perception.

3.6 Discussion

The Quality-Impact Inquiry method is a generic approach to collecting
data about quality levels and how these quality levels impact
stakeholder satisfaction. It builds on our earlier work that shows that a
relationship between quality levels and quality impact can be
established. The Quality-Impact Inquiry method extends such earlier

Quality Requirements Elicitation based on Inquiry of Quality-Impact …

59

work by describing a 4-step process that allows the requirements
engineer to inquire how different levels of quality impact the
satisfaction of stakeholder needs. The 4-step process is independent of
the specific type of quality and independent of the specific kind of
stakeholder need. Instead the method can be tailored to any pair of
quality and impact measurement that are of interest for the system under
consideration. A condition for such tailoring is that a relationship
between quality level measurements and impact measurements can be
established.
The identified level of quality impact transforms the knowledge into a
judgment of good-enough quality. Good enough quality can be decided
considering cost and benefit views while exposing barriers and
breakpoints (Regnell et al., 2008). Product strategy decisions,
competitors and learning processes are other factors that assist
requirement engineer to adjust the level of quality.
The Quality-Impact Inquiry method complements existing quality
requirements elicitation methods. Pairs of system quality and impact
variables that should be investigated as part of requirements inquiry can
be identified with goal-based inquiry methods (Chung et al., 2000; Potts
et al., 1994). Means-ends relationships of prioritized soft goals that
relate to system qualities, respectively to stakeholder needs, are
candidates for inquiry of the corresponding Quality-Impact
relationships. These candidates are used as an input to the tailoring of
the Quality-Impact Inquiry method.
The Quality-Impact Inquiry method utilizes supporting elicitation
methods (Pohl & Rupp, 2011), in particular the use of questionnaires,
prototypes, and workshops. The method combines these supporting
methods into a structured process for creating and analyzing evidence
for decision-making about good-enough quality. Recommendations
about good practice, e.g. of how to perform an effective workshop
(Gottesdiener, 2002), should be followed as long as they do not
interfere with the objective of the inquiry of Quality-Impact
relationships that are under investigation. Side results from applying the
method, e.g. the discovery of new needs or stakeholders during a
workshop, should be embraced and handed-over as an input to the main
stream of requirements engineering work that is performed in the
development project.
In a larger scale validation of the proposed method in a real world
situation various stakeholders and experienced requirements engineers
are involved. To achieve trustworthy results, a specific probability is
identified for considering a confident interval in which the value of
quality impact lies within a specific range. Smaller numbers of
stakeholders that involve in the experiment method generate wider

Chapter 3

60

confidence intervals since there is an inverse square root relationship
between the confidence interval and the sample size. It means that to cut
error margin in half, number of involved stakeholders is assumed to be
four times more.
For practitioners, the Quality-Impact Inquiry method represents an
extension of the requirements engineering toolset and is used for
addressing the challenging problem of determining good-enough
product quality. Once the relevant Quality-Impact relationships have
been established, they can be reused while evolving and maintaining the
application and for specifying the quality levels of comparable
applications, for example in a software product line.
Quality-Impact Inquiry is not a method that is easy to apply and should
thus be used by requirement engineers that are experienced in
experimentation with end-users. In many practical situations, this is
unproblematic. It is common to use experienced requirements engineers
for critical tasks such as the development of service level agreements of
software-based services (Marilly, Martinot, Papini, & Goderis, 2002).
The Quality-Impact Inquiry method complements competitive analysis
of product quality (Regnell et al., 2008). It allows a definition of
thresholds for useful quality and excessive quality based on evidence
gathered by analyzing the perception of stakeholders. In the example of
QoS and QoE, the requirements engineer determines the service quality
threshold by translating quality of experience judgments with the
experimentally determined Quality-Impact relationship. In the real-
world example described in this paper, the former was quantified with
software reaction time and the latter expressed with the Mean Opinion
Score. The questionnaire in Fig 3 shows that the relationship can also be
calculated for other impacts. For example, question 3 was used to
collected data about the strategic positioning of the feature according to
the Quper model (Regnell et al., 2008). Question 4 allowed collecting
data about the risk of churn. Any prior knowledge about the nature of
the relationship, e.g. as expressed by the exponential function in
(Fiedler et al., 2010), reduces the need for measurements, thus reduces
the effort of Quality-Impact inquiry.
For research, an understanding of the generic relationships between
levels of more types of software quality and impact is urgently needed.
These generic relationships reduce the need for experimentation during
real-world requirements elicitation by pointing to the functions that
should be used during Quality-Impact inquiry. The characterization of
the generic relationship between QoS and QoE as an exponential
function (Fiedler et al., 2010) is an example of the research that is
needed. Security and usability are examples of quality attributes that
should be prioritized by research. The research may include

Quality Requirements Elicitation based on Inquiry of Quality-Impact …

61

investigation of what appropriate measurement scales are, e.g. of
security or usability, and how a generic Quality-Impact relationship
may be expressed and investigated based on scales other than the ratio
scale that we used in Fig 4 and Fig 5. Also open is the development of
an understanding of how the interaction of multiple quality variables,
e.g. security and usability (Braz et al., 2007), can be expressed with
Quality-Impact relationships, thus made amenable to requirement
elicitation with the Quality-Impact Inquiry method we have presented.
The study of Quality-Impact relationships would also allow building
empirical evidence for checking deeply held beliefs in the requirements
engineering field. One such belief is expressed with the KANO model
(Sauerwein, Bailom, Matzler, & Hinterhuber, 1996). That model states
that the impact of quality on stakeholder satisfaction is expressed
through exponential or linear functions that describe attractive
requirements, which cause delight when implemented, one-dimensional
requirements, which are easily articulated, or must-be requirements,
which are not obvious, but considered self-evident by stakeholders. The
presented Quality-Impact Inquiry method enables practitioners to
determine the exact relationships for the software products and features
they are specifying. For researchers, it can be used to inform the design
of empirical research studies that aim at investigating generic Quality-
Impact relationships.

3.7 Conclusions

The paper has described an approach to quality requirements elicitation
based on inquiry of Quality-Impact relationships. The method, called
Quality-Impact Inquiry, guides a requirements engineer in the inquiry of
good-enough software quality from the viewpoint of the appropriate
stakeholders of the software system. When applying the method,
stakeholders experience a prototype of a software system. The
requirements engineer collects the real values of chosen quality
attributes and subjective feedback from the stakeholders about
perceived quality impacts. The analysis of Quality-Impact uses a
regression function. The method can be tailored to pairs of qualities and
impacts that are of interest for the specific software system. Systematic
use of the method gives support for deciding about appropriate the
quality levels. These can then be specified in a quantified manner for
example by stating minimal, maximal, and expected quality in a
software requirements specification (SRS) or service level agreement
(SLA).
The Quality-Impact Inquiry method was applied for requirements
engineering in real-world development projects. One example was
shown to describe how to apply the method in practice and to report on

Chapter 3

62

lessons-learned. We reported how we have applied the method for these
requirements engineering endeavors, shared early experiences from
applying the method, and have given recommendations for practical use
of the method.
Future research should aim at validating and evaluating the method in
further, large-scale requirement engineering situations. Moreover,
future research should aim at expanding the understanding of the
generic relationships between given combinations of software quality
attributes and their impacts as well as how quality attributes interact
with each other. The resulting knowledge will translate into a SLA and
help to allow and to reuse the knowledge of appropriate quality levels.
It will also help accelerating and simplifying quality requirements
inquiry in real-world projects, and enable research to check deeply held
beliefs about how quality and impacts are interrelated.

Acknowledgments

This work has been co-sponsored by the European Commission through
the FI-PPP integrated project FI-STAR under grant agreement number
318389.

 Quality of Experience CHAPTER 4
Assessment Based on Analytics

Abstract

This work, which is connected to the Future Internet Public Private
Partnership (FI-PPP) Integrated Project FI-STAR, presents a validation
approach for Future Internet applications based on the use of analytics.
In particular, it discusses how to use and combine software use and
health statistics for the assessment of user-perceived Quality of
Experience, in order to monitor user satisfaction, the risk of user churn,
and the status of the corresponding ecosystem.

Keywords

QoE, QoS, response times, usage, analytics, churn, ecosystem

4.1 Introduction

Since more than a decade back in time, Quality of Experience (QoE)
has become a key issue of concern for operators and providers, as bad
QoE implies the risk of user churn (Le Callet et al., 2012). Indeed, when
a service or application does not meet its stakeholder’s expectations,
economic loss is an almost unavoidable consequence. In particular,
innovative applications are at risk once they do not succeed to satisfy
their users.
In many sectors, the concern for quality has led to market entry barriers
related to compliance, certification, and access to mission-critical data.
In health and care, for example, IEC 80001 compliance, ISO 13485
certification, and access to data such as patient records are considered
problematic (Thuemmler et al., 2013). Software product lines have been
successfully used by companies to capture such domain-specific
knowledge and thereby achieve systematic reuse across their product
portfolio (Pohl, Böckle, & van der Linden, 2005). Such reuse is

Chapter 4

64

achieved in a software product line by engineering design specifications
and components that embed commonality and variability across use
cases of potential products. The impact is faster development and
productization and better quality of applications and services.
The Future Internet Public Private Partnership (FI-PPP), a “European
programme for Internet-enabled innovation”, builds on this idea of
product lines and attempts to scale it from a single product or services
company to a whole industry (European-Commission, 2013). FI- PPP
aims at establishing an evolving set of common components, called
Generic Enablers (GE) that capture solutions to common problems in
the building of internet- enabled applications and domain-specific
problems such as interoperability with common devices and systems
and those outlined above. The hope is that the resulting infrastructure
advances the European markets for smart infrastructures, increases the
effectiveness of business processes delivered through the Internet, and
ultimately stimulates the economy.
In its first phase, a set of GEs have been developed, which aim at
providing the basis for innovative applications in virtually any
application domain (e.g. e-Health, logistics, energy, and etc.) within
development cycles that are significantly shorter than those achieved so
far. The GEs are offered by potentially competing manufacturers and
producers. Application and service developers acquire these GEs for
building applications in question.
The GE-based approach is comparable to buying the ingredients for a
delicious home-prepared meal in a supermarket. Obviously, both the
quality of the ingredients and their skillful preparation determine the
quality of the prepared meal. The host can judge the quality of the meal
by looking at its look, smell, and taste. The ultimate judgments of that
quality, however, is seen in the appraisals of the host’s guests and in the
amount that people eat and are willing to return to eat upon the host’s
invitation. Translation of this metaphor to the domain of the Future
Internet, makes it obvious that (1) the quality of the GEs and (2) the
way these GEs are composed make a difference for a developed
application as well as the corresponding ecosystem (Laghari &
Connelly, 2012). The impact of these two concerns can be seen from (a)
the comments of the users, and (b) the degree of usage.
How hosts, respectively product and service organizations, achieve
good-enough quality throughout the whole value chain, from
ingredients to the guests’ experience and attitude, is the research
underlying this paper. Our approach is based on the idea that the health
of applications and their ingredients (such as GEs) needs to be
measured, and that its impact on usage needs to be monitored, in order
to be able to assure sufficient Quality of Experience.

Quality of Experience Assessment Based on Analytics

65

The FI-PPP Integrated Project FI-STAR (FI-STAR, 2013) will address
such validation, and develop and implement the corresponding
measurement and analysis tools as follow-up of the ongoing
requirement elicitation work. This paper reflects the approach to
application and GE validation within FI-STAR and its seven use cases.
The remainder of the paper is structured as follows. Section II
introduces an example of a FI-PPP based system and reviews existing
work for quality evaluation of such system. Section III describes the
analytics-based approach for QoE prediction and assessment. Section
IV summarizes and concludes the paper with planned future work.

4.2 Background

Building a new system that meets its quality requirements is inherently
difficult. Such requirements are often stated qualitatively like “the
system must be fast”, hence are ambiguous and thus difficult to verify
(Glinz, 2008). When implementing such requirements the following
kinds of problems may be encountered. Developers build a system that
delivers less than the stakeholders expect. This results in stakeholder
dissatisfaction and might render a system useless. Developers build a
system that delivers more than the stakeholders need. This results in a
system that is more expensive than necessary.
Quality is particularly important for heterogeneously sourced systems
such as FI-PPP-based systems. When engineering such system,
developers depend on components, applications, and services provided
by third parties. Developers give such trust only if solution providers
keep their promises regarding the service levels that will be achieved.
Analytics provide transparency for evaluating such third-party
contributions, for predicting the quality of the system, and for
monitoring if the running service performs as promised. Analytics also
provide the basis for root-cause analysis if quality objectives have not
been met.
Figure 4-1 shows such a heterogeneously sourced system, a simplified
and anonymized version of a FI-STAR use case scenario (www.fi-
star.eu). The system allows patients and clinicians to collect and
exchange biometric and other patient data. The system creates value by
empowering the patient with rapid feedback about his condition and by
providing treatment decision-support to the clinician.

Chapter 4

66

Figure 4-1: Patient data sharing solution. The letters in parentheses refer to suppliers the
corresponding items are sourced from

According to the system architecture specification, the system consisted
components, applications, devices, and services sourced from multiple
parties. Patients would access the system with their personal mobile
phone. The patient data collector, sharing proxy, and analysis
applications would be developed by a software product company active
in the healthcare domain. The sensors would be procured from a device
manufacturer. User authentication services would be provided by the
relevant national authority. The electronic health record would be
managed by the hospital for which the solution was designed. The
hospital-internal private cloud services, accessed by the clinician with
one of the common web-browsers, would be provided by a local service
provider. Components for connectivity and interoperability, finally,
would be provided as GEs by FI-WARE platform providers.
A potentially wide variety of quality characteristics need to be fulfilled
for given components, applications, and services to become useful.
Such quality characteristics include functional suitability, performance,
compatibility, usability, reliability, security, maintainability, and
portability (ISO/IEC-25010, 2010). The quality levels achieved by a
component or application is specified in the release requirements of that
component or application. Warranties are used to guarantee that a
product performs as promised in the specification. Usually, such a
warranty is agreed between the supplier and the customer in a licensing
contract (Kittlaus & Clough, 2009). Correspondingly, if a supplier

 deployment Patient Data Sharing Solution

Hospital

Demilitarized Zone

Secure Zone

Patient's Mobile

National Authority

Proxy Serv er

Priv ate Cloud

Clinician's PC

Clinician Patient

Patient Data
Collector

Authentication
Serv ice

Electronic Health
Record

Patient Data
Analysis

Browser

Patient Data
Sharing Proxy

Sensor

Quality of Experience Assessment Based on Analytics

67

provides a service for a customer, they agree on the quality of the
service in a service level agreement (SLA). An SLA again specifies the
quality levels, which the supplier gives warranty for. Norms, standards,
and certificates are used to specify minimal quality levels to be
achieved by products in a given industry (Thuemmler et al., 2013).
Once developed, integrated, and deployed, the quality of the system
affects the quality of the user’s experience (Fiedler et al., 2010). Quality
can be so good that it allows the supplier to compete with alternative
solutions (Regnell et al., 2008). If quality falls below the utility
breakpoint, however, users will turn away and discard the solution
(Khirman & Henriksen, 2002).
One approach to manage quality proactively is the use of software
analytics (Menzies & Zimmermann, 2013). With analytics, attributes of
software entities are measured, the measurements analysed and
transformed into indicators that are useful for decision-making
(ISO/IEC-15939, 2007). Such measurements give transparency, thus
allows developers and management to decide about the course of
actions for evolving the software system (Fotrousi et al., 2013).
A wide variety of analytics are used to manage the quality of the
software engineering process, the quality of the resulting software
products, and software systems that are in operation. Developer
dashboards improve awareness of a project’s situation to support
planning and coordination (Baysal, Holmes, & Godfrey, 2013). Such
dashboards include information about the organization, plans and tasks,
source code and builds, and quality assurance (Czerwonka, Nagappan,
Schulte, & Murphy, 2013). Prior to release, analytics allow analyzing
performance and reliability of software and services (D. Zhang et al.,
2013). Similar analytics and geo-location are used to monitor and
improve performance of the service in a real-world context with the
intended users (Musson et al., 2013). Voting buttons were proposed for
measuring quality of experience. In comparison to laboratory testing,
such late-stage analytics give diverse and representative results because
they come from real use. Learning organizations use them to validate
and improve testing assumptions.
Even-though analytics are effective for managing quality of software,
their use is difficult to plan. In particular, it is unclear what an effective
analytics approach is for managing quality when a heterogeneously
sourced system such as the one outlined above is being developed. Too
many variables could be measured, and trade-offs need to be made
between ease of data collection and value of the analysis (Guest, Bunce,
& Johnson, 2006). In addition, the composition of a system with
multiple heterogeneous parts by one player and the use of the same part

Chapter 4

68

by different players makes standardization of a small set of broadly
useful measurements important.

4.3 Approach

Our approach of predicting quality of experience (QoE) is based on
three models: a measurement model, a composition model, and a
lifecycle model.
The measurement model defines how quality attributes are measured
and used to assert about properties of software or of users. It closely
follows ISO/IEC 15939 for analytics measurement and ISO/IEC 25010
for quality attributes.
The software composition model defines how quality propagates as a
result of composing software into real-world solutions. The approach
follows the ideas of soft goal networks that allow deriving high-level
global quality properties from low-level measurements (Chung et al.,
2000; Haigh, 2010).
The software lifecycle model determines when measurements are made
and quality assessed or predicted. It follows the principles of product
management (Fricker, 2012), where the release of a software product is
prepared, made available for customers, and integrated by such
customers into larger solutions.

4.3.1 Measurement Model
The measurement model describes how data is collected to make
assertions about quality of service and of experience. In our cooking
metaphor, such data collection corresponds to the host that probes the
ingredients or meal and interviews the guests. Probes include looking,
taking a smell, and tasting the food and asking guests whether they like
its appearance and taste. The host uses this data to understand whether
the food meet the desired quality standards and to understand the
guest’s experience with it. Some of these properties can be derived from
the corresponding measurement. For example, bad smell can be an
indicator for bad food. Other properties can be inferred from indirect
measurements. For example, whether the food was good can be inferred
by asking the guests about their opinion. Similarly, experienced cooks
are able to accurately predict the guest’s experience based on the just
tasting the food. The assessment of the ultimate success is different,
though. As hosts, we would define it as whether the guests are eating or
not. This can be assessed by observing whether the guests are eating or
not.
Figure 4-2 illustrates the application of these measurements to software
that is used by a human user. The human user corresponds to the guest,

Quality of Experience Assessment Based on Analytics

69

the software to the meal, and the host to the software provider. Software
analytics are applied at the software, and empirical inquiries performed
with users. Both of them allow collecting data for assessing quality of
the software, quality of the user experience. Also, either of them also
allows assessing the ultimate success of the software: whether it is used
or not.

Figure 4-2: Measurement model: software analytics and empirical inquiry to assess

QoS, QoE and usage of software

A substantial amount of work exists to understand how to assess
software quality with analytics. Many address a selection of the
software quality characteristics outlined by ISO/IEC 25010. The most
common analytics are time and error-based.

Table 4-1: Measurement of software quality

 Time Error OS/MOS

Functional
suitability

 (Elbaum, Karre, &
Rothermel, 2003;
Kirakowski & Corbett,
1993; Lew, Olsina, &
Zhang, 2010)

Performance (Ran, 2003)

Reliability (Merzbacher &
Patterson,
2002)

(Ran, 2003;
Zheng & Lyu,
2010)

Security (Madan,
Gogeva-
Popstojanova,
Vaidyanathan,
& Trivedi,
2002)

(Madan et al.,
2002)

Usability (Kirakowski & Corbett,
1993; Lew et al., 2010)

The most common empirical inquiry determines a score of user opinion.
Table 4-1 gives an overview of existing work on how measurements are
used to assess software quality. It excludes software qualities that affect

Chapter 4

70

stakeholders other than users. Table 4-1 illustrates the same idea: how
measurements will be used to assess the impact of software on the user.
Evaluation of functional suitability of a software is usually performed
by functional testing. However the result of functional suitability is
reflected in terms of functional acceptability from user’s perception. It
can be reflected even in usage analytics (Elbaum et al., 2003). As an
example, during a software use, unnecessary functions will be
understood from click a stream that is an implication of functional
inappropriateness.
Other aspects of software quality, usually called Quality of Service
(QoS), are performance (Burby & Atchison, 2007) and reliability
(Houtermans, Capelle, & Al-Ghumgham, 2007). QoS usually refers to
system components and network delivery capacity. It concerns time
behavior, resource utilization, and capacity aspects, in addition to
availability, frequency of failures, fault tolerance rate, and
recoverability time. Attributes such as throughput, loss ratio, jitter,
packet error rate, response time, delay and availability time are vital for
measuring in the network layer, and the transport layer between two
machines (Hyun-Jong et al., 2008; Ran, 2003). Servers are measured by
essential attributes of load rate, error rate, response time, peak response
time, server up time, resource (i.e. CPU, memory, and disk) utilization,
and threads (Bhatti & Friedrich, 1999). In the application layer,
statistics about page errors, frame rate, call success rate and the quality
of outputs such as audio, video, and files are identified to measure QoS
(Mintauckis, 2010). Finally, security of an application/component
affects the solution health (Hamam, Eid, El Saddik, & Georganas, 2008;
Lindskog & Jonsson, 2002). The Attacks attribute is used to combat
security issues such as DOS or malware attacks (Yadav & Gupta,
2013).
A time dependent attribute has the largest coverage for an end-to-end
software health assessment. User perceived quality is dominated by
response time and waiting time (Egger, Hossfeld, Schatz, & Fiedler,
2012; Xiong & Perros, 2009). The perception of quality on the user is
typically measured by the Mean-Opinion-Score (MOS) (ITU-T, 2003).
Availability of the software solution is measured by infinite response
time. The response time of an intrusion tolerant system with the steady-
state availability is monitored for the security assessment (Madan et al.,
2002). Therefore response time can be a suitable candidate that
simulates waiting time, availability as well as security. Error attribute
provides further support for the assessment of software health in
security, availability and fault tolerance.

Quality of Experience Assessment Based on Analytics

71

Table 4-2: QoE measurements mapping to Quality in Use

 Time Error OS/MOS

Effectiveness

Efficiency

Satisfaction

Freedom from Risk

4.3.2 Composition Model
The composition model describes how data is collected to combine
assertions about quality of service and of experience. In our cooking
metaphor, such composition corresponds to the host that combines and
cooks the ingredient into a meal that is served to the guests. The host
uses heating and combination to process the ingredients into a result of
value higher for the guests than the inputs that were used. The quality of
the inputs and the host’s own work affect the quality of the results. The
results are at most as good as the worst of the inputs that was used.
Skilful preparation of the meal and presentation of it to the guests,
however, can increase the value of the whole meal well beyond the sum
of the inputs.
Figure 4-3.shows a software composition model that allows describing
the solution shown in Figure 4-1. Nodes such as the private cloud
contained in the secure zone, which again is contained in the hospital
correspond to instances of the infrastructure. Patient Data Analysis and
Electronic Health Record are two instances of software that run on the
private cloud infrastructure. Not shown in Figure 4-1 are the generic
enablers that the Patient Data Analysis contains. The clinician is a user
that uses a browser, which communicates with the Patient Data
Analysis and the Electronic Health Record software.
The composition model allows propagation of quality properties. Such
propagation can be expressed in rules that are evaluated with an
instance of the composition model (Figure 4-3 is such an instance).
They determine how a property of one entity, for example a failure of
an infrastructure, affects the rest of the software system. A set of
availability-related rules would state that failure of infrastructure
implies that any dependent software and user will experience the
failure. Software that runs on reliable infrastructure, however, would
not be affected by the failure. Similarly, a set of performance-related
rules would state that the total round-trip time for a user interaction
corresponds to the aggregated time behavior of software, run on the
respective infrastructure, and communication channels. Depending on

Chapter 4

72

criticality of quality of service and experience, the set of rules can be
completed and refined.

Figure 4-3: Composition model

4.3.3 Lifecycle Model
The lifecycle model describes how software and service infrastructure
come into existence and evolve. The evolution stages then give raise to
possible quality assurance actions. In our cooking metaphor, the cook
would perform quality assurance actions based on the evolution stages
of ingredients
and the meal. He would look for ingredients that are made available to
him on the market. Preferably he would turn to ingredients with trusted
quality, for example as indicated by certification labels awarded to
some ingredients. In addition, he would touch and take a smell of some
of them to assess their quality. Once in the kitchen, he would process
and combine the ingredients into a meal. The meal undergoes quality
assurance in the kitchen before it is made available to the guests. Once
these guests have received the meal, they look at it and take a smell
(presumably with delight) before they decide to eat it.
Figure 4-4 shows a lifecycle model that allows explaining how software
is developed, delivered, integrated, and made available as a solution for
the healthcare environment shown in Figure 4-1. Each supplier,
indicated by the letter in parentheses in Figure 4-1, has developed,
tested, and released software or infrastructure. The integrator then has
performed acceptance testing of the sourced software and infrastructure
in his own premises and integrated them into the solution that Figure
4-1 describes. Again the integrator tested and released the software
solution, before performing site acceptance testing and initiating its
usage.

Quality of Experience Assessment Based on Analytics

73

Figure 4-4: Software lifecycle model. FAT= factory acceptance test. SAT=site

acceptance test.
The lifecycle model describes quality assurance actions that are
performed at each respective lifecycle stage. Factory acceptance testing
includes testing of the software in the supplier’s laboratory
environment. Software release is accompanied with certification. Such
certification is standard practice of application stores such as Google
Play and iTunes (Jansen & Bloemendal, 2013). Site acceptance testing
is performed by the consumer of the released software in a laboratory
environment that is as close to the real-world environment as possible.
In the healthcare environment, site acceptance testing of software
systems is accompanied IEC 80001 and ISO/IEC 27000 (Thuemmler et
al., 2013). Systems that have passed all these quality assurance hurdles
are put into use, where they continue to be monitored (Musson et al.,
2013).
Each quality assurance action involves collection of analytics and
possibly empirical data as described by the measurement model. The
collected data updates earlier predictions made with the help of the
composition model. Such updating allows validation of the prediction
and increases confidence in whether the final solution actually meets its
quality objectives or not.
The combination of the measurement and composition models enables
early prediction. The lifecycle model allows planning for step-wise
improvement of the prediction, hence reducing the risks of the final test
of where a solution is being used in a real-world environment and the
achieved quality of experience level determines success or failure of the
system.

4.4 Conclusions

While important for any software, quality assurance is particularly
critical for acceptance and successful use of heterogeneously sourced
systems. Such systems integrate components from parties that the
system integrator has little control over. As a consequence, the risk and

Chapter 4

74

the corresponding need for trust much higher than when a single-source
software is developed.
This paper introduces a holistic approach for quality assurance of
heterogeneously sourced systems. It is based on three models that
together allow quality of experience prediction and step-wise validation
of these predictions with real-world measurements. The measurement
model describes how analytics and empirical data is collected and used
for assertion of quality of service and experience. The composition
model describes how measurements are propagated through the
composed system to estimate overall quality of service and experience.
The lifecycle model describes quality assurance actions that are used for
validation of system quality.
The paper represents an important step towards unifying the so far
separated disciplines of software engineering and performance
evaluation in telecommunication systems. It contributes with a QoS and
QoE measurement-based approach to managing quality while a
software system is constructed. The paper explains the approach in
depth with the metaphor of a host that prepares a delicious meal to
guests. An exemplar taken from the FI-STAR project is taken to
describe how the approach is transferred into a real-world environment.
Future work includes validation of the approach. Analysis of software
architectures will be used for refining the composition model. A
literature review will be performed for constructing a rule base for QoS
and QoE assessment and prediction. Empirical inquiries about
engineering process will be used to evaluate the composition model and
refine the description of quality assurance practices. A particular focus
will be given to the healthcare environment, where quality assurance is
particularly important as it may decide on death or life.

Acknowledgment

This work has been co-sponsored by the European Commission, DG
CNECT, through the FI-PPP Integrated Project FI-STAR.

Chapter 5 The Effect of Requests
for User Feedback on Quality of
Experience

[Since this chapter is submitted to a journal, it cannot be published
online.]

References

Abelow, D. (1993). Automating feedback on software product use. CASE

Trends December, 15-17.
Adamczyk, P. D., & Bailey, B. P. (2004). If not now, when?: the effects of

interruption at different moments within task execution. Paper
presented at the SIGCHI conference on Human factors in computing
systems, Vienna, Austria.

Ahtinen, A., Mattila, E., Vaatanen, A., Hynninen, L., Salminen, J., Koskinen,
E., & Laine, K. (2009). User experiences of mobile wellness
applications in health promotion: User study of Wellness Diary,
Mobile Coach and SelfRelax. Paper presented at the 3rd International
Conference on Pervasive Computing Technologies for Healthcare,
London, UK.

Antón, A. I., & Potts, C. (1998). The use of goals to surface requirements for
evolving systems. Paper presented at the International Conference on
Software Engineering, Kyoto, Japan.

Antons, J.-N., Arndt, S., Schleicher, R., & Möller, S. (2014). Brain activity
correlates of quality of experience Quality of Experience (pp. 109-
119): Springer.

Bailey, B. P., Konstan, J. A., & Carlis, J. V. (2001). The effects of interruptions
on task performance, annoyance, and anxiety in the user interface.
Paper presented at the IFIP International Conference on Human
Computer Interaction (INTERACT), Tokyo, Japan.

Barbosa, O., & Alves, C. (2011). A systematic mapping study on software
ecosystems. Paper presented at the The 2nd International Conference
on Software Business (ICSOB 2011), Brussels, Belgium.

Barrett, L. F., Mesquita, B., & Gendron, M. (2011). Context in emotion
perception. Current Directions in Psychological Science, 20(5), 286-
290.

Bass, L., Clements, P., & Kazman, R. (2012). Software Architecture in
Practice (3rd ed.): Addison-Wesley Professional.

Baysal, O., Holmes, R., & Godfrey, M. (2013). Developer Dashboards: The
Need for Qualitative Analytics. IEEE Software, 30(4), 46-52.

Bevan, N. (1999). Quality in use: Meeting user needs for quality. Journal of
Systems and Software, 49(1), 89-96.

102

Beyer, J., & Möller, S. (2014). Gaming Quality of Experience (pp. 367-381):
Springer.

Bhatti, N. B., & Friedrich, R. (1999). Web server support for tiered services.
IEEE Network, 13(5), 64-71. doi:10.1109/65.793694

Boegh, J. (2008). A New Standard for Quality Requirements. IEEE Software,
25(2), 57-63.

Boley, H., & Chang, E. (2007). Digital ecosystems: Principles and semantics.
Bosse, T., Broekens, J., Dias, J., & van der Zwaan, J. (2014). Emotion

Modeling: Towards Pragmatic Computational Models of Affective
Processes: Springer.

Braz, C., Seffa, A., & M'Raihi, D. (2007). Designing a Trade-Off Between
Usability and Security: A Metrics-Based Model. Paper presented at
the 11th IFIP TC 13 International Conference on Human-Computer
Interaction (INTERACT 2007), Rio de Janeiro, Brazil.

Broekens, J., Pommeranz, A., Wiggers, P., & Jonker, C. M. (2010). Factors
influencing user motivation for giving online preference feedback.
Paper presented at the 5th Multidisciplinary Workshop on Advances
in Preference Handling (MPREF'10), Lisbon, Portugal.

Brooks, P., & Hestnes, B. (2010). User measures of quality of experience: why
being objective and quantitative is important. Network, IEEE, 24(2),
8-13. doi:10.1109/MNET.2010.5430138

Burby, J., & Atchison, S. (2007). Actionable web analytics: using data to make
smart business decisions: Wiley. com.

Buse, R., & Zimmermann, T. (2010). Analytics for software development.
Paper presented at the Foundations of Software Engineering
(FSE)/SDP workshop on Future of software engineering research,
Santa Fe, NM, USA.

Buse, R., & Zimmermann, T. (2012). Information needs for software
development analytics. Paper presented at the Proceedings of the 2012
International Conference on Software Engineering.

Canale, S., Facchinei, F., Gambuti, R., Palagi, L., & Suraci, V. (2014). User
profile based Quality of Experience. Paper presented at the 18th
Internation Conference on Computers, Santorini Island, Greece.

Chapin, S. F., Torn, M. S., & Tateno, M. (1996). Principles of ecosystem
sustainability. American Naturalist, 1016-1037.

Chung, L., Nixon, B., Yu, E., & Mylopoulos, J. (2000). Non-Functional
Requirements in Software Engineering (Vol. 5). Boston, USA:
Springer US.

Clifton, B. (2012). Advanced web metrics with Google Analytics: Wiley. com.
Cokins, G. (2009). Performance management: Integrating strategy execution,

methodologies, risk, and analytics (Vol. 21): John Wiley & Sons.
Costanza, R. (1992). Toward an operational definition of ecosystem health.

Ecosystem health: New goals for environmental management, 239-
256.

Costanza, R., & Mageau, M. (1999). What is a healthy ecosystem? Aquatic
ecology, 33(1), 105-115.

Côté, N., & Berger, J. (2014). Speech Communication Quality of Experience
(pp. 165-177): Springer.

References

103

Creswell, J. W. (2014). Research design: Qualitative, quantitative, and mixed
methods approaches (4 ed.): Sage publications.

Cysneiros, L. M., & Sampaio do Prado Leite, J. C. (2004). Nonfunctional
requirements: From elicitation to conceptual models. IEEE
Transactions on Software Engineering, 30(5), 328-350.

Czerwonka, J., Nagappan, N., Schulte, W., & Murphy, B. (2013). Codemine:
Building a software development data analytics platform at microsoft.
Software, IEEE, 30(4), 64-71.

Davenport, T. H., & Harris, J. G. (2007). Competing on analytics: the new
science of winning: Harvard Business Press.

Delen, D., & Demirkan, H. (2013). Data, information and analytics as services.
Decision Support Systems, 55(1), 359-363.

Doerr, J., Kerkow, D., Koenig, T., Olsson, T., & Suzuki, T. (2005). Non-
functional requirements in industry-three case studies adopting an
experience-based NFR method. Paper presented at the 13th IEEE
International Conference on Requirements Engineering, Paris, France.

Egger, S., Hossfeld, T., Schatz, R., & Fiedler, M. (2012). Waiting times in
quality of experience for web based services. Paper presented at the
Fourth International Workshop on Quality of Multimedia Experience
(QoMEX2012), Yarra Valley, Australia.

Elbaum, S., Karre, S., & Rothermel, G. (2003). Improving web application
testing with user session data. Paper presented at the 25th
International Conference on Software Engineering (ICSE'03),
Portland, OR, USA.

Elo, S., & Kyngäs, H. (2008). The qualitative content analysis process. Journal
of advanced nursing, 62(1), 107-115.

European-Commission. (2013). FI-PPP | Future Internet PPP. Retrieved from
http://www.fi-ppp.eu

Feiten, B., Garcia, M.-N., Svensson, P., & Raake, A. (2014). Audio
Transmission Quality of Experience (pp. 229-245): Springer.

FI-STAR. (2013). Home: FI-STAR. Retrieved from http://www.fi-star.eu
FI-STAR. (2015). Specific Enablers, Fi-Star Catatlouge. Retrieved from

http://catalogue.fi-star.eu/enablers
FI-WARE. (2015). About FIWARE. Retrieved from

https://www.fiware.org/about-us/
Fiedler, M., & Hoßfeld, T. (2010). Quality of Experience-related differential

equations and provisioning-delivery hysteresis. Paper presented at the
21st ITC Specialist Seminar on Multimedia Applications-Traffic,
Performance and QoE Miyazaki, Japan.

Fiedler, M., Hossfeld, T., & Tran-Gia, P. (2010). A Generic Quantitative
Relationship between Quality of Experience and Quality of Service.
IEEE Network, 24(2), 36-41.

Fotrousi, F. (2015). QoE-Probe Android. Retrieved from
https://github.com/farnazfotrousi/QoE-Probe-Android

Fotrousi, F., Fricker, S. A., & Fiedler, M. (2014). Quality requirements
elicitation based on inquiry of quality-impact relationships. Paper
presented at the 22nd IEEE International Conference on Requirements
Engineering, Karlskrona, Sweden.

104

Fotrousi, F., Izadyan, K., & Fricker, S. A. (2013). Analytics for Product
Planning: In-Depth Interview Study with SaaS Product Managers.
Paper presented at the IEEE 6th International Conference on Cloud
Computing (Cloud 2013), Santa Clara, CA, USA.

Fricker, S. A. (2012). Software product management Software for People (pp.
53-81): Springer.

Fricker, S. A., & Glinz, M. (2010). Comparison of Requirements Hand-Off,
Analysis, and Negotiation: Case Study. Paper presented at the 18th
IEEE International Requirements Engineering Conference (RE'10),
Sydney, Australia.

Fricker, S. A., Gorschek, T., Byman, C., & Schmidle, A. (2010). Handshaking
with Implementation Proposals: Negotiating Requirements
Understanding. IEEE Software, 27(2), 72-80.

Fricker, S. A., Schneider, K., Fotrousi, F., & Thuemmler, C. (2015). Workshop
videos for requirements communication. Requirements engineering,
1-32. doi:10.1007/s00766-015-0231-5

Froehlich, J., Chen, M. Y., Consolvo, S., Harrison, B., & Landay, J. A. (2007).
MyExperience: a system for in situ tracing and capturing of user
feedback on mobile phones. Paper presented at the 5th international
conference on Mobile systems, applications and services
(MobiSys2007), San Juan, Puerto Rico.

Garcia, M.-N., Argyropoulos, S., Staelens, N., Naccari, M., Rios-Quintero, M.,
& Raake, A. (2014). Video Streaming Quality of Experience (pp. 277-
297): Springer.

Gilb, T. (2005). Competitive Engineering: A Handbood for Systems
Engineering, Requirements Engineering, and Software Engineering
using Planguage: Butterworth-Heinemann.

Glinz, M. (2005). Rethinking the Notion of Non-Functional Requirements.
Paper presented at the 3rd World Congress for Software Quality,
Munich, Germany.

Glinz, M. (2007). On Non-Functional Requirements. Paper presented at the
IEEE International Requirements Engineering Conference (RE'07),
New Delhi, India.

Glinz, M. (2008). A Risk-Based, Value-Oriented Approach to Quality
Requirements. IEEE Software, 25(2), 34-41.

Golafshani, N. (2003). Understanding reliability and validity in qualitative
research. The qualitative report, 8(4), 597-606.

Golaszewski, S. (2013). Flexisketch. Retrieved from
https://play.google.com/store/apps/details?id=ch.uzh.ifi.rerg.flexisketc
h&hl=en

Gottesdiener, E. (2002). Requirements by Collaboration: Workshops for
Defining Needs: Addison-Wesley Professional.

Guest, G., Bunce, A., & Johnson, L. (2006). How many interviews are enough?
An experiment with data saturation and variability. Field methods,
18(1), 59-82.

Haigh, M. (2010). Software quality, non-functional software requirements and
IT-business alignment. Software Quality Journal, 18(3), 361-385.

Hamam, A., Eid, M., El Saddik, A., & Georganas, N. D. (2008). A quality of
experience model for haptic user interfaces. Paper presented at the

References

105

Ambi-Sys workshop on Haptic user interfaces in ambient media
systems (HAS 2008), Quebec City, Canada.

Hassenzahl, M., Wessler, R., & Hamborg, K.-C. (2001). Exploring and
understanding product qualities that users desire. Paper presented at
the 5th Annual Conference of the Human-Computer Interaction Group
of the British Computer Society (IHm-HCI 01), Lille, France.

Herrera, M., Moraga, M. Å., Caballero, I., & Calero, C. (2010). Quality in use
model for web portals (QiUWeP) Current Trends in Web Engineering
(pp. 91-101): Springer.

Herrmann, A., & Paech, B. (2008). MOQARE: misuse-oriented quality
requirements engineering. Requirements engineering, 13(1), 73-86.

Hoßfeld, T., Keimel, C., Hirth, M., Gardlo, B., Habigt, J., Diepold, K., & Tran-
Gia, P. (2014). Best practices for QoE crowdtesting: QoE assessment
with crowdsourcing. IEEE Transactions on Multimedia, 16(2), 541-
558.

Houtermans, M., Capelle, T. V., & Al-Ghumgham, M. (2007). Reliability
Engineering & Data Collection. Paper presented at the Second
International Conference on Systems (ICONS'07), Martinique,
France.

Hsieh, H.-F., & Shannon, S. E. (2005). Three approaches to qualitative content
analysis. Qualitative health research, 15(9), 1277-1288.

Hyun-Jong, K., Dong Hyeon, L., Jong Min, L., Kyoung-Hee, L., Won, L., &
Seong-Gon, C. (2008, 2-4 Sept. 2008). The QoE Evaluation Method
through the QoS-QoE Correlation Model. Paper presented at the
Fourth International Conference on Networked Computing and
Advanced Information Management (NCM '08).

Iansiti, M., & Richards, G. L. (2006). Information Technology Ecosystem:
Structure, Health, and Performance. Antitrust Bull., 51, 77.

IBosch, J. (2009). From software product lines to software ecosystems. Paper
presented at the 13th International Software Product Line Conference
(SPLC 2009), San Francisco, CA, USA.

Irvine, C., & Levin, T. (2000). Quality of Security Service. Paper presented at
the 2000 Workshop on New Security Paradigms (NSPW'00), New
York, NY, USA.

ISO/IEC-9126. (2001[part1] - 2003 [part2, part3]). ISO Standard 9126:
Software Engineering – Product Quality. Geneve: International
Organization for Standarization

ISO/IEC-15939. (2007). Systems and Software Engineering - Measurement
Process (Vol. ISO/IEC 15939): International Organization for
Standarization.

ISO/IEC-25010. (2010). Systems and Software Quality Requirements and
Evaluation (Vol. ISO/IEC FDIS 25010): International Organization
for Standarization.

ITU-T. (2003). ITU-T P.800. in Mean Opinion Score(MOS) terminology, ed:
Telecommunication Standardization Sector of ITU.

Ivory, M. Y., & Hearst, M. A. (2001). The state of the art in automating
usability evaluation of user interfaces. ACM Computing Surveys
(CSUR), 33(4), 470-516.

106

Jacobs, S. (1999). Introducing Measurable Quality Requirements: A Case
Study. Paper presented at the 4th IEEE International Symposium on
Requirements Engineering (RE'99), Limerick, Ireland.

Jansen, S., & Bloemendal, E. (2013). Defining app stores: The role of curated
marketplaces in software ecosystems Software Business. From
Physical Products to Software Services and Solutions (pp. 195-206):
Springer.

Jansen, S., Finkelstein, A., & Brinkkemper, S. (2009). A sense of community:
A research agenda for software ecosystems. Paper presented at the
31st International Conference on Software Engineering (ICSE 2009)
Vancouver, Canada.

Jung, G., Hiltunen, M., Joshi, K., Schlichting, R., & Pu, C. (2010). Mistral:
Dynamically Managing Power, Performance, and Adaptation Cost in
Cloud Infrastructures. Paper presented at the IEEE International
Conference on Distributed Computing Systems (ICDCS 2010),
Genoa, Italy.

Karapanos, E. (2013). User experience over time Modeling Users' Experiences
with Interactive Systems (pp. 57-83): Springer.

Khan, A., Sun, L., Jammeh, E., & Ifeachor, E. (2010). Quality of experience-
driven adaptation scheme for video applications over wireless
networks. IET communications, 4(11), 1337-1347.

Khirman, S., & Henriksen, P. (2002). Relationship between quality-of-service
and quality-of-experience for public internet service. Paper presented
at the 3rd Workshop on Passive and Active Measurement, Fort
Collins, CO, USA.

Kilkki, K. (2008). Quality of Experience in Communications Ecosystem.
Journal of Universal Computer Science, 14(5), 615-624.

Kim, H.-J., Lee, D. H., Lee, J. M., Lee, K.-H., Lyu, W., & Choi, S.-G. (2008).
The QoE evaluation method through the QoS-QoE correlation model.
Paper presented at the Fourth International Conference on Networked
Computing and Advanced Information Management (NCM'08)
Gyeongju, Korea.

Kim, J. H., Gunn, D. V., Schuh, E., Phillips, B., Pagulayan, R. J., & Wixon, D.
(2008). Tracking real-time user experience (TRUE): a comprehensive
instrumentation solution for complex systems. Paper presented at the
SIGCHI conference on Human Factors in Computing Systems,
Florence, Italy.

Kirakowski, J., & Corbett, M. (1993). SUMI: The software usability
measurement inventory. British journal of educational technology,
24(3), 210-212.

Kittlaus, H.-B., & Clough, P. (2009). Software Product Management and
Pricing: Springer.

Klas, M., Heidrich, J., Munch, J., & Trendowicz, A. (2009). CQML Scheme: A
classification scheme for comprehensive quality model landscapes.
Paper presented at the 35th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA'09), Patras, Greece.

Kujala, S. (2003). User involvement: a review of the benefits and challenges.
Behaviour & information technology, 22(1), 1-16.

References

107

Kujala, S., & Miron-Shatz, T. (2013). Emotions, experiences and usability in
real-life mobile phone use. Paper presented at the SIGCHI Conference
on Human Factors in Computing Systems, Paris, France.

Kusters, R. J., van Solingen, R., & Trienekens, J. J. (1999). Identifying
embedded software quality: two approaches. Quality and Reliability
Engineering International, 15(6), 485-492.

Laghari, K. U. R., & Connelly, K. (2012). Toward total quality of experience:
A QoE model in a communication ecosystem. Communications
Magazine, IEEE, 50(4), 58-65.

Le Callet, P., Möller, S., & Perkis, A. (2012). Qualinet white paper on
definitions of quality of experience. European Network on Quality of
Experience in Multimedia Systems and Services.

Lew, P., Olsina, L., & Zhang, L. (2010). Quality, quality in use, actual
usability and user experience as key drivers for web application
evaluation (Web Engineering ed.): Springer.

Lewis, M., Haviland-Jones, J. M., & Barrett, L. F. (2010). Handbook of
emotions: Guilford Press.

Lindskog, S., & Jonsson, E. (2002). Adding Security to Quality of Service
Architectures. Paper presented at the Proceedings of the SS-GRR
Conference.

López, J. M., Fajardo, I., & Abascal, J. (2007). Towards Remote Empirical
Evaluation of Web Pages’ Usability Human-Computer Interaction.
Interaction Design and Usability (pp. 594-603): Springer.

Madan, B. B., Gogeva-Popstojanova, K., Vaidyanathan, K., & Trivedi, K. S.
(2002). Modeling and quantification of security attributes of software
systems. Paper presented at the Dependable Systems and Networks
(DSN 2002)

Manikas, K., & Hansen, K. M. (2013a). Reviewing the Health of Software
Ecosystems–A Conceptual Framework Proposal. Paper presented at
the International Workshop on Software Ecosystems (IWSECO
2013), Potsdam, Germany.

Manikas, K., & Hansen, K. M. (2013b). Software ecosystems–a systematic
literature review. Journal of Systems and Software, 86(5), 1294-1306.

Marilly, E., Martinot, O., Papini, H., & Goderis, D. (2002). Service level
agreements: a main challenge for next generation networks. Paper
presented at the 2nd European Conference on Universal Multiservice
Networks (ECUMN 2002) Colmar, France.

Menzies, T., & Zimmermann, T. (2013). Software analytics: so what? IEEE
Software, 30(4), 31-37.

Merzbacher, M., & Patterson, D. (2002). Measuring end-user availability on
the web: Practical experience. Paper presented at the Dependable
Systems and Networks (DSN 2002), Bethesda, Maryland, USA.

Millon, T., Lerner, M. J., & Weiner, I. B. (2003). Handbook of Psychology,
Personality and Social Psychology (Vol. 5): John Wiley & Sons.

Mills, A. J., Durepos, G., & Wiebe, E. (2009). Encyclopedia of case study
research (Vol. 2): Sage Publications.

Minhas, T. N., & Fiedler, M. (2013). Quality of experience hourglass model.
Paper presented at the International Conference on Computing,

108

Management and Telecommunications (ComManTel), Ho Chi Minh
City, Vietnam.

Mintauckis, K. (2010). Empirical studies of Quality of Experience (QoE): A
Systematic Literature Survey. (Master of Science), University of
OSLO.

Mitra, K., Zaslavsky, A., & Åhlund, C. (2011). A probabilistic context-aware
approach for quality of experience measurement in pervasive systems.
Paper presented at the 26th ACM symposium on applied computing,
Taichung, Taiwan

Musson, R., Richards, J., Fisher, D., Bird, C., Bussone, B., & Ganguly, S.
(2013). Leveraging the Crowd: How 48,000 Users Helped Improve
Lync Performance. IEEE Software, 30(4), 38-45.

Pagano, D., & Brügge, B. (2013). User involvement in software evolution
practice: a case study. Paper presented at the 35th international
conference on Software engineering (ICSE 2013), San Francisco, CA,
USA.

Parmenter, D. (2010). Key performance indicators (KPI): developing,
implementing, and using winning KPIs: John Wiley & Sons.

Petersen, K., Feldt, R., Mujtaba, S., & Mattsson, M. (2008). Systematic
mapping studies in software engineering. Paper presented at the 12th
International Conference on Evaluation and Assessment in Software
Engineering.

Pohl, K., Böckle, G., & van der Linden, F. J. (2005). Software product line
engineering: foundations, principles and techniques: Springer Science
& Business Media.

Pohl, K., & Rupp, C. (2011). Requirements Engineering Fundamentals: A
Study Guide for the Certified Professional for Requirements
Engineering Exam - Foundation Level - IREB Compliant: Rocky
Nook Computing.

Potter, W. J., & Levine‐Donnerstein, D. (1999). Rethinking validity and
reliability in content analysis.

Potts, C., Takahashi, K., & Antón, A. I. (1994). Inquiry-based requirements
analysis. IEEE Software, 11(2), 21-32.

Raake, A., & Egger, S. (2014). Quality and quality of experience Quality of
Experience (pp. 11-33): Springer.

Ran, S. (2003). A model for web services discovery with QoS. ACM Sigecom
exchanges, 4(1), 1-10.

Rapport, D. J., Costanza, R., & McMichael, A. J. (1998). Assessing ecosystem
health. Trends in Ecology & Evolution, 13(10), 397-402.

Regnell, B., Berntsson Svensson, R., & Olsson, S. (2008). Supporting
Roadmapping of Quality Requirements. IEEE Software, 25(2), 42-47.

Reiter, U., Brunnström, K., De Moor, K., Larabi, M.-C., Pereira, M., Pinheiro,
A., . . . Zgank, A. (2014). Factors Influencing Quality of Experience
Quality of Experience (pp. 55-72): Springer.

Rettig, M. (1994). Prototyping for Tiny Fingers. Communications of the ACM,
37(4), 21-27.

Roto, V., Law, E., Vermeeren, A., & Hoonhout, J. (2011). User Experience
White Paper. Bringing clarity to the concept of user experience.

References

109

Santos, R., Werner, C. u., Barbosa, O., & Alves, C. (2012). Software
Ecosystems: Trends and Impacts on Software Engineering. Paper
presented at the 26th Brazilian Symposium in Software Engineering
(SBES 2012).

Sauerwein, E., Bailom, F., Matzler, K., & Hinterhuber, H. H. (1996). The Kano
model: How to delight your customers. Paper presented at the
International Working Seminar on Production Economics, Igls,
Innsbruck, Austria.

Scherer, K. R. (2005). What are emotions? And how can they be measured?
Social science information, 44(4), 695-729.

Schleicher, R., Westermann, T., & Reichmuth, R. (2014). Mobile Human–
Computer Interaction Quality of Experience (pp. 339-349): Springer.

Shaikh, J., Fiedler, M., & Collange, D. (2010). Quality of Experience from user
and network perspectives. annals of telecommunications-annales des
telecommunications, 65(1-2), 47-57.

Souag, A., Salinesi, C., & Wattiau, I. (2012). Ontologies for Security
Requirements: A Literature Survey and Classification. Paper
presented at the Advanced Information Systems Engineering
Workshops, Gdańsk, Poland.

Strohmeier, D., Egger, S., Raake, A., Hoßfeld, T., & Schatz, R. (2014). Web
Browsing Quality of Experience (pp. 329-338): Springer.

Szajna, B., & Scamell, R. W. (1993). The effects of information system user
expectations on their performance and perceptions. Mis Quarterly,
17(4), 493-516. doi:10.2307/249589

Thomas, D. R. (2006). A general inductive approach for analyzing qualitative
evaluation data. American journal of evaluation, 27(2), 237-246.

Thuemmler, C., Mival, O., Benyon, D., Buchanan, W., Paulin, A., Fricker, S., .
. . Grottland, A. (2013). Norms and standards in modular medical
architectures. Paper presented at the 15th International Conference on
e-Health Networking, Applications & Services (Healthcom).

Varela, M., Skorin-Kapov, L., & Ebrahimi, T. (2014). Quality of Service
Versus Quality of Experience Quality of Experience (pp. 85-96):
Springer.

Wang, T., Si, Y., Xuan, X., Wang, X., Yang, X., Li, S., & Kavs, A. J. (2010). A
QoS ontology cooperated with feature models for non-functional
requirements elicitation. Paper presented at the Proceedings of the
Second Asia-Pacific Symposium on Internetware, Suzhou, China.

Wechsung, I., & De Moor, K. (2014). Quality of Experience Versus User
Experience Quality of Experience (pp. 35-54): Springer.

Weiblen, T., Giessmann, A., Bonakdar, A., & Eisert, U. (2012). Leveraging the
Software Ecosystem-Towards a Business Model Framework for
Marketplaces. Paper presented at the Dcnet/ice-b/optics.

Westin, S. S. (1998). Performance measurement and evaluation: definitions
and relationships. Retrieved from
http://www.gao.gov/assets/80/77277.pdf

Wieringa, R., Maiden, N., Mead, N., & Rolland, C. (2006). Requirements
engineering paper classification and evaluation criteria: a proposal and
a discussion. Requirements engineering, 11(1), 102-107.

110

Xiong, K., & Perros, H. (2009). Service performance and analysis in cloud
computing. Paper presented at the World Conference on Services, Los
Angeles, California, USA.

Yadav, P., & Gupta, G. (2013). Depleting Clouds. International Journal of
Engineering, 2(4).

Yin, R. K. (2014). Case study research: Design and methods (5 ed.): Sage
publications.

Zahariadis, T., Papadimitriou, D., Tschofenig, H., Haller, S., Daras, P.,
Stamoulis, G. D., & Hauswirth, M. (2011). Towards a future internet
architecture: Springer.

Zhang, D., Dang, Y., Lou, J.-G., Han, S., Zhang, H., & Xie, T. (2011).
Software analytics as a learning case in practice: Approaches and
experiences. Paper presented at the Proceedings of the International
Workshop on Machine Learning Technologies in Software
Engineering.

Zhang, D., Han, S., Dang, Y., Lou, J.-G., Zhang, H., & Xie, T. (2013).
Software Analytics in Practice. IEEE Software, 30(5), 30-37.

Zhang, J., & Ansari, N. (2011). On assuring end-to-end QoE in next generation
networks: challenges and a possible solution. IEEE Communications
Magazine, 49(7), 185-191.

Zheng, Z., & Lyu, M. R. (2010). An adaptive QoS-aware fault tolerance
strategy for web services. Empirical Software Engineering, 15(4),
323-345.

Acronynms

FI-PPP: Future Internet Public Private Partnership
FI-STAR: Future Internet Social and Technological Alignment
Research
GE: Generic Enabler
HCI: Human Computer Interaction
KPI: Key Performance Indicator
QoE: Quality of Experience
QoS: Quality of Service
MOS: Mean Opinion Score
NF: Non-Functional
OBJ: Objective
OS: Opinion Score
RQ: Research Question
SECO: Software ECOsystem
SLA: Service Level Agreement
SRS: Software Requirement Specification
UX: User Experience

