
Quality of Experience Assessment
Based on Analytics

Samuel A. Fricker, Farnaz Fotrousi, Markus Fiedler
Blekinge Institute of Technology

Karlskrona, Sweden
{samuel.fricker, farnaz.fotrousi, markus.fiedler}@bth.se

Philippe Cousin
Easy Global Market

France
philippe.cousin@eglobalmark.com

Abstract—This work, which is connected to the Future Internet
Public Private Partnership (FI-PPP) Integrated Project FI-STAR,
presents a validation approach for Future Internet applications
based on the use of analytics. In particular, it discusses how to use
and combine software use and health statistics for the assessment
of user-perceived Quality of Experience, in order to monitor user
satisfaction, the risk of user churn, and the status of the
corresponding ecosystem.

Keywords—QoE; QoS; response times; usage; analytics; churn;
ecosystem

I. INTRODUCTION
Since more than a decade back in time, Quality of

Experience (QoE) has become a key issue of concern for
operators and providers, as bad QoE implies the risk of user
churn [1]. Indeed, when a service or application does not meet
its stakeholders expectations, economic loss is an almost
unavoidable consequence. In particular, innovative applications
are at risk once they do not succeed to satisfy their users.

In many sectors, the concern for quality has led to market
entry barriers related to compliance, certification, and access to
mission-critical data. In health and care, for example, IEC
80001 compliance, ISO 13485 certification, and access to data
such as patient records are considered problematic [2]. Software
product lines have been successfully used by companies to
capture such domain-specific knowledge and thereby achieve
systematic reuse across their product portfolio [3]. Such reuse
is achieved in a software product line by engineering design
specifications and components that embed commonality and
variability across use cases of potential products. The impact is
faster development and productization and better quality of
applications and services.

The Future Internet Public Private Partnership (FI-PPP), a
“European programme for Internet-enabled innovation”, builds
on this idea of product lines and attempts to scale it from a
single product or services company to a whole industry [4]. FI-
PPP aims at establishing an evolving set of common
components, called Generic Enablers (GE) that capture
solutions to common problems in the building of internet-
enabled applications and domain-specific problems such as
interoperability with common devices and systems and those
outlined above. The hope is that the resulting infrastructure
advances the European markets for smart infrastructures,
increases the effectiveness of business processes delivered
through the Internet, and ultimately stimulates the economy.

 In its first phase, a set of GEs have been developed, which
aim at providing the basis for innovative applications in
virtually any application domain (e.g. e-Health, logistics,
energy, etc.) within development cycles that are significantly
shorter than those achieved so far. The GEs are offered by
potentially competing manufacturers and producers.
Application and service developers acquire these GEs for
building applications in question.

The GE-based approach is comparable to buying the
ingredients for a delicious home-prepared meal in a
supermarket. Obviously, both the quality of the ingredients and
their skilful preparation determine the quality of the prepared
meal. The host can judge the quality of the meal by looking at
its look, smell, and taste. The ultimate judgments of that quality,
however, is seen in the appraisals of the host’s guests and in the
amount that people eat and are willing to return to eat upon the
host’s invitation. Translation of this metaphor to the domain of
the Future Internet, makes it obvious that (1) the quality of the
GEs and (2) the way these GEs are composed make a difference
for a developed application as well as the corresponding
ecosystem [5]. The impact of these two concerns can be seen
from (a) the comments of the users, and (b) the degree of usage.

 How hosts, respectively product and service organizations,
achieve good-enough quality throughout the whole value chain,
from ingredients to the guests’ experience and attitude, is the
research underlying this paper. Our approach is based on the
idea that the health of applications and their ingredients (such
as GEs) needs to be measured, and that its impact on usage
needs to be monitored, in order to be able to assure sufficient
Quality of Experience.

The FI-PPP Integrated Project FI-STAR [6] will address
such validation, and develop and implement the corresponding
measurement and analysis tools as follow-up of the ongoing
requirement elicitation work. This paper reflects the approach
to application and GE validation within FI-STAR and its seven
use cases.

The remainder of the paper is structured as follows. Section
II introduces an example of a FI-PPP based system and reviews
existing work for quality evaluation of such system. Section III
describes the analytics-based approach for QoE prediction and
assessment. Section IV summarizes and concludes the paper
with planned future work.

II. BACKGROUND
Building a new system that meets its quality requirements is

inherently difficult. Such requirements are often stated
qualitatively like “the system must be fast”, hence are
ambiguous and thus difficult to verify [7]. When implementing
such requirements the following kinds of problems may be
encountered. Developers build a system that delivers less than
the stakeholders expect. This results in stakeholder
dissatisfaction and might render a system useless. Developers
build a system that delivers more than the stakeholders need.
This results in a system that is more expensive than necessary.

Quality is particularly important for heterogeneously
sourced systems such as FI-PPP-based systems. When
engineering such system, developers depend on components,
applications, and services provided by third-parties. Developers

give such trust only if solution providers keep their promises
regarding the service levels that will be achieved. Analytics
provide transparency for evaluating such third-party
contributions, for predicting the quality of the system, and for
monitoring if the running service performs as promised.
Analytics also provide the basis for root-cause analysis if
quality objectives have not been met.

Figure 1: Patient Data Sharing Solution shows such a
heterogeneously sourced system, a simplified and anonymized
version of a FI-STAR use case scenario (www.fi-star.eu). The
system allows patients and clinicians to collect and exchange
biometric and other patient data. The system creates value by
empowering the patient with rapid feedback about his condition
and by providing treatment decision-support to the clinician.

Figure 1: Patient Data Sharing Solution. The letters in parentheses refer to suppliers the corresponding items are sourced from.

According to the system architecture specification, the
system consisted components, applications, devices, and
services sourced from multiple parties. Patients would access
the system with their personal mobile phone. The patient data
collector, sharing proxy, and analysis applications would be
developed by a software product company active in the
healthcare domain. The sensors would be procured from a
device manufacturer. User authentication services would be
provided by the relevant national authority. The electronic
health record would be managed by the hospital for which the
solution was designed. The hospital-internal private cloud
services, accessed by the clinician with one of the common
web-browsers, would be provided by a local service provider.

Components for connectivity and interoperability, finally,
would be provided as GEs by FI-WARE platform providers.

A potentially wide variety of quality characteristics need to
be fulfilled for given components, applications, and services to
become useful. Such quality characteristics include functional
suitability, performance, compatibility, usability, reliability,
security, maintainability, and portability [8]. The quality levels
achieved by a component or application is specified in the
release requirements of that component or application.
Warranties are used to guarantee that a product performs as
promised in the specification. Usually, such a warranty is
agreed between the supplier and the customer in a licensing
contract [9]. Correspondingly, if a supplier provides a service

 deployment Patient Data Sharing Solution

Hospital

Demilitarized Zone

Secure Zone

Patient's Mobile

National Authority

Proxy Serv er

Priv ate Cloud (e)

Clinician's PC

Clinician Patient

Patient Data
Collector (a)

Authentication
Serv ice (c)

Electronic Health
Record (d)

Patient Data
Analysis (a)

Browser

Patient Data
Sharing Proxy (a)

Sensor (b)

http://www.fi-star.eu/

for a customer, they agree on the quality of the service in a
service level agreement (SLA). An SLA again specifies the
quality levels, which the supplier gives warranty for. Norms,
standards, and certificates are used to specify minimal quality
levels to be achieved by products in a given industry [2].

Once developed, integrated, and deployed, the quality of the
system affects the quality of the user’s experience [10]. Quality
can be so good that it allows the supplier to compete with
alternative solutions [11]. If quality falls below the utility
breakpoint, however, users will turn away and discard the
solution [12].

One approach to manage quality proactively is the use of
software analytics [13]. With analytics, attributes of software
entities are measured, the measurements analysed and
transformed into indicators that are useful for decision-making
[14]. Such measurements give transparency, thus allows
developers and management to decide about the course of
actions for evolving the software system [15].

A wide variety of analytics are used to manage the quality
of the software engineering process, the quality of the resulting
software products, and software systems that are in operation.
Developer dashboards improve awareness of a project’s
situation to support planning and coordination [16]. Such
dashboards include information about the organization, plans
and tasks, source code and builds, and quality assurance [17].
Prior to release, analytics allow analysing performance and
reliability of software and services [18]. Similar analytics and
geo-location are used to monitor and improve performance of
the service in a real-world context with the intended users [19].
Voting buttons were proposed for measuring quality of
experience. In comparison to laboratory testing, such late-stage
analytics give diverse and representative results because they
come from real use. Learning organizations use them to validate
and improve testing assumptions.

Even-though analytics are effective for managing quality of
software, their use is difficult to plan. In particular, it is unclear
what an effective analytics approach is for managing quality
when a heterogeneously sourced system such as the one
outlined above is being developed. Too many variables could
be measured, and trade-offs need to be made between ease of
data collection and value of the analysis [20]. In addition, the
composition of a system with multiple heterogeneous parts by
one player and the use of the same part by different players
makes standardization of a small set of broadly useful
measurements important.

III. APPROACH
Our approach of predicting quality of experience (QoE) is

based on three models: a measurement model, a composition
model, and a lifecycle model.

The measurement model defines how quality attributes are
measured and used to assert about properties of software or of
users. It closely follows ISO/IEC 15939 for analytics
measurement and ISO/IEC 25010 for quality attributes.

The software composition model defines how quality
propagates as a result of composing software into real-world
solutions. The approach follows the ideas of soft goal networks

that allow deriving high-level global quality properties from
low-level measurements [21].

The software lifecycle model determines when
measurements are made and quality assessed or predicted. It
follows the principles of product management [22], where a the
release of a software product is prepared, made available for
customers, and integrated by such customers into larger
solutions.

A. Measurement Model
The measurement model describes how data is collected to

make assertions about quality of service and of experience. In
our cooking metaphor, such data collection corresponds to the
host that probes the ingredients or meal and interviews the
guests. Probes include looking, taking a smell, and tasting the
food and asking guests whether they like its appearance and
taste. The host uses this data to understand whether the food
meet the desired quality standards and to understand the guest’s
experience with it. Some of these properties can be derived
from the corresponding measurement. For example, bad smell
can be an indicator for bad food. Other properties can be
inferred from indirect measurements. For example, whether the
food was good can be inferred by asking the guests about their
opinion. Similarly, experienced cooks are able to accurately
predict the guest’s experience based on the just tasting the food.
The assessment of the ultimate success is different, though. As
hosts, we would define it as whether the guests are eating or not.
This can be assessed by observing whether the guests are eating
or not.

Figure 2 illustrates the application of these measurements to
software that is used by a human user. The human user
corresponds to the guest, the software to the meal, and the host
to the software provider. Software analytics are applied at the
software, and empirical inquiries performed with users. Both of
them allow collecting data for assessing quality of the software,
quality of the user experience. Also, either of them also allows
assessing the ultimate success of the software: whether it is used
or not.

Figure 2: Measurement model: software analytics and empirical

inquiry to assess QoS, QoE, and usage of software.

A substantial amount of work exists to understand how to
assess software quality with analytics. Many address a selection
of the software quality characteristics outlined by ISO/IEC
25010. The most common analytics are time and error-based.

Software

Empirical
inquiry

Software
analytics

Data collection
for quality analysis

QoE

QoS

Usage

Indicator

User

Assessed
System

The most common empirical inquiry determines a score of user
opinion. Table 1 gives an overview of existing work on how
measurement are used to assess software quality. It excludes
software qualities that affect stakeholders other than users.
Table 2 illustrates the same idea: how measurements will be
used to assess the impact of software on the user.

Table 1: Measurement of Software Quality
 Time Error OS/MOS

Functional suitability [23, 24], [25]
Performance [26]

Reliability [27] [28], [29]
Security [30] [30]
Usability [23, 24]

Evaluation of functional suitability of a software is usually
performed by functional testing. However the result of
functional suitability is reflected in terms of functional
acceptability from user’s perception. It can be reflected even in
usage analytics [25]. As example, during a software use,
unnecessary functions will be understood from click a stream
that is an implication of functional inappropriateness.

Other aspects of software quality, usually called Quality of
Service (QoS), are performance [31] and reliability [32]. QoS
usually refers to system components and network delivery
capacity. It concerns time behavior, resource utilization, and
capacity aspects, in addition to availability, frequency of
failures, fault tolerance rate, and recoverability time. Attributes
such as throughput, loss ratio, jitter, packet error rate, response
time, delay and availability time are vital for measuring in the
network layer, and the transport layer between two machines
[28, 33]. Servers are measured by essential attributes of load
rate, error rate, response time, peak response time, server up
time, resource (i.e. CPU, memory, and disk) utilization, and
threads [34]. In the application layer, statistics about page
errors, frame rate, call success rate and the quality of outputs
such as audio, video, and files are identified to measure QoS
[35]. Finally, security of an application/component affects the
solution health [36, 37]. The Attacks attribute is used to combat
security issues such as DOS or malware attacks [38].

A time dependent attribute has the largest coverage for an
end-to-end software health assessment. User perceived quality
is dominated by response time and waiting time [39, 40]. The
perception of quality on the user is typically measured by the
Mean-Opinion-Score (MOS)[41]. Availability of the software
solution is measured by infinite response time. The response
time of an intrusion tolerant system with the steady-state
availability is monitored for the security assessment [30].
Therefore response time can be a suitable candidate that
simulates waiting time, availability as well as security. Error
attribute provides further support for the assessment of software
health in security, availability and fault tolerance.

Table 2: QoE Measurements mapping to Quality in Use
 Time Error OS/MOS

Effectiveness

Efficiency

Satisfaction
Freedom from Risk

B. Composition Model
The composition model describes how data is collected to

combine assertions about quality of service and of experience.
In our cooking metaphor, such composition corresponds to the
host that combines and cooks the ingredient into a meal that is
served to the guests. The host uses heating and combination to
process the ingredients into a result of value higher for the
guests than the inputs that were used. The quality of the inputs
and the host’s own work affect the quality of the results. The
results are at most as good as the worst of the inputs that was
used. Skilful preparation of the meal and presentation of it to
the guests, however, can increase the value of the whole meal
well beyond the sum of the inputs.

Figure 3 shows a software composition model that allows
describing the solution shown in Figure 1. Nodes such as the
private cloud contained in the secure zone, which again is
contained in the hospital correspond to instances of the
infrastructure. Patient Data Analysis and Electronic Health
Record are two instances of software that run on the private
cloud infrastructure. Not shown in Figure 1 are the generic
enablers that the Patient Data Analysis contains. The clinician
is a user that uses a browser, which communicates with the
Patient Data Analysis and the Electronic Health Record
software.

Figure 3: Composition Model

The composition model allows propagation of quality
properties. Such propagation can be expressed in rules that are
evaluated with an instance of the composition model (Figure 1
is such an instance). They determine how a property of one
entity, for example a failure of an infrastructure, affects the rest
of the software system. A set of availability-related rules would
state that failure of infrastructure implies that any dependent
software and user will experience the failure. Software that runs
on reliable infrastructure, however, would not be affected by
the failure. Similarly, a set of performance-related rules would
state that the total roundtrip time for a user interaction
corresponds to the aggregated time behavior of software, run on
the respective infrastructure, and communication channels.
Depending on criticality of quality of service and experience,
the set of rules can be completed and refined.

C. Lifecycle Model
The lifecycle model describes how software and service

infrastructure come into existence and evolve. The evolution
stages then give raise to possible quality assurance actions. In
our cooking metaphor, the cook would perform quality
assurance actions based on the evolution stages of ingredients

 class Composition Model

Software

Generic Enabler

Infrastructure

Specific Software

User

runs on

contains

contains

is a

communicates
with

uses

and the meal. He would look for ingredients that are made
available to him on the market. Preferably he would turn to
ingredients with trusted quality, for example as indicated by
certification labels awarded to some ingredients. In addition, he
would touch and take a smell of some of them to assess their
quality. Once in the kitchen, he would process and combine the
ingredients into a meal. The meal undergoes quality assurance
in the kitchen before it is made available to the guests. Once
these guests have received the meal, they look at it and take a
smell (presumably with delight) before they decide to eat it.

Figure 4 shows a lifecycle model that allows explaining how
software is developed, delivered, integrated, and made
available as a solution for the healthcare environment shown in
Figure 1. Each supplier, indicated by the letter in parentheses in
Figure 1, has developed, tested, and released software or
infrastructure. The integrator then has performed acceptance
testing of the sourced software and infrastructure in his own
premises and integrated them into the solution that Figure 1
describes. Again the integrator tested and released the software
solution, before performing site acceptance testing and
initiating its usage.

Figure 4: Software Lifecycle Model. FAT = factory acceptance test.

SAT = site acceptance test.

The lifecycle model describes quality assurance actions that
is performed at each respective lifecycle stage. Factory
acceptance testing includes testing of the software in the
supplier’s laboratory environment. Software release is
accompanied with certification. Such certification is standard
practice of application stores such as Google Play and iTunes
[42]. Site acceptance testing is performed by the consumer of
the released software in a laboratory environment that is as
close to the real-world environment as possible. In the
healthcare environment, site acceptance testing of software
systems is accompanied IEC 80001 and ISO/IEC 27000 [43].
Systems that have passed all these quality assurance hurdles are
put into use, where they continue to be monitored [19].

Each quality assurance action involves collection of
analytics and possibly empirical data as described by the
measurement model. The collected data updates earlier
predictions made with the help of the composition model. Such
updating allows validation of the prediction and increases
confidence in whether the final solution actually meets its
quality objectives or not.

The combination of the measurement and composition
models enable early prediction. The lifecycle model allows
planning for step-wise improvement of these prediction, hence
reducing the risks of the final test of where a solution is being
used in a real-world environment and the achieved quality of
experience level determines success or failure of the system.

IV. SUMMARY AND CONCLUSION
While important for any software, quality assurance is

particularly critical for acceptance and successful use of
heterogeneously sourced systems. Such systems integrator
components from parties that the system integrator has little
control over. As a consequence, the risk and the corresponding
need for trust much higher than when a single-source software
is developed.

This paper introduces a holistic approach for quality
assurance of heterogeneously sourced systems. It is based on
three models that together allow quality of experience
prediction and step-wise validation of these predictions with
real-world measurements. The measurement model describes
how analytics and empirical data is collected and used for
assertion of quality of service and experience. The composition
model describes how measurements are propagated through the
composed system to estimate overall quality of service and
experience. The lifecycle model describes quality assurance
actions that are used for validation of system quality.

The paper represents an important step towards unifying the
so far separated disciplines of software engineering and
performance evaluation in telecommunication systems. It
contributes with a QoS and QoE measurement-based approach
to managing quality while a software system is constructed. The
paper explains the approach in depth with the metaphor of a
host that prepares a delicious meal to guests. An exemplar taken
from the FI-STAR project is taken to describe how the approach
is transferred into a real-world environment.

Future work includes validation of the approach. Analysis
of software architectures will be used for refining the
composition model. A literature review will be performed for
constructing a rule base for QoS and QoE assessment and
prediction. Empirical inquiries about engineering process will
be used to evaluate the composition model and refine the
description of quality assurance practices. A particular focus
will be given to the healthcare environment, where quality
assurance is particularly important as it may decide on death or
life.

V. ACKNOWLEDGMENT
This work has been co-sponsored by the European

Commission, DG CNECT, through the FI-PPP Integrated
Project FI-STAR.

VI. REFERENCES
[1] P. Le Callet, S. Möller, and A. Perkis, "Qualinet White Paper on

Definitions of Quality of Experience (2012)," European Network on
Quality of Experience in Multimedia Systems and Services, Lausanne,
SwitzerlandMarch 2013 2013.

[2] C. Thuemmler, S. Fricker, B.-J. Koops, M. Fiedler, E. Kosta, A. Schneider,
et al., "Norms and Standards in Modular Medical Architectures," presented
at the Submitted to 2013 IEEE 15th International Conference on e-Health
Networking, Applications and Services (IEEE Healthcom 2013), Lisbon,
Portugal, 2013.

[3] K. Pohl, G. Böckle, and F. Van Der Linden, Software product line
engineering: foundations, principles, and techniques: Springer, 2005.

[4] European-Commission. (2013, 2013-07-18). FI-PPP | Future Internet
PPP. Available: http://www.fi-ppp.eu

[5] K. U. R. Laghari and K. Connelly, "Toward total quality of experience: A
QoE model in a communication ecosystem," Communications Magazine,
IEEE, vol. 50, pp. 58-65, 2012.

Development
FAT SAT Use

Integration

Product/Service
Certification

Release

Lab
Testing

System
Certification

Runtime
Monitoring

http://www.fi-ppp.eu/

[6] FI-STAR_project. (2013, 2013-07-18). Home: FI-STAR. Available:
http://www.fi-star.eu

[7] M. Glinz, "A Risk-Based, Value-Oriented Approach to Quality
Requirements," IEEE Software, vol. 25, pp. 34-41, 2008.

[8] ISO/IEC, "Systems and Software Quality Requirements and Evaluation,"
vol. ISO/IEC FDIS 25010, ed: ISO/IEC, 2010.

[9] H.-B. Kittlaus and P. Clough, Software Product Management and Pricing:
Springer, 2009.

[10] M. Fiedler, T. Hossfeld, and T.-G. Phuoc, "A Generic Quantitative
Relationship between Quality of Experience and Quality of Service," IEEE
Network, vol. 24, pp. 36-41, 2010.

[11] B. Regnell, R. Berntsson Svensson, and S. Olsson, "Supporting
Roadmapping of Quality Requirements," IEEE Software, vol. 25, pp. 42-
47, 2008.

[12] S. Khirman and P. Henriksen, "Relationship between quality-of-service
and quality-of-experience for public internet service," in In Proc. of the 3rd
Workshop on Passive and Active Measurement, 2002.

[13] T. Menzies and T. Zimmermann, "Software Analytics: So What?," IEEE
Software, vol. 30, pp. 31-37, 2013.

[14] ISO/IEC, "Systems and Software Engineering - Measurement Process,"
vol. ISO/IEC 15939, ed, 2007.

[15] F. Fotrousi, K. Izadyan, and S. Fricker, "Analytics for Product Planning:
In-Depth Interview Study with SaaS Product Managers," presented at the
IEEE 6th International Conference on Cloud Computing (Cloud 2013),
Santa Clara, CA, USA, 2013.

[16] O. Baysal, R. Holmes, and M. Godfrey, "Developer Dashboards: The Need
for Qualitative Analytics," IEEE Software, vol. 30, pp. 46-52, 2013.

[17] J. Czerwonka, N. Nagappan, W. Schulte, and B. Murphy, "CODEMINE:
Building a Software Development Data Analytics Platform at Microsoft,"
IEEE Software, vol. 30, pp. 64-71, 2013.

[18] D. Zhang, S. Han, Y. Dang, J.-G. Lou, H. Zhang, and T. Xie, "Software
Analytics in Practice," IEEE Software, vol. 30, pp. 30-37, 2013.

[19] R. Musson, J. Richards, D. Fisher, C. Bird, B. Bussone, and S. Ganguly,
"Leveraging the Crowd: How 48,000 Users Helped Improve Lync
Performance," IEEE Software, vol. 30, pp. 38-45, 2013.

[20] G. Guest, A. Bunce, and L. Johnson, "How many interviews are enough?
An experiment with data saturation and variability," Field methods, vol.
18, pp. 59-82, 2013/07/16/09:08:13 2006.

[21] L. Chung, B. Nixon, E. Yu, and J. Mylopoulos, Non-Functional
Requirements in Software Engineering. Boston, USA: Kluwer Academic
Publishers, 2000.

[22] S. Fricker, "Software Product Management," in Software for People:
Fundamentals, Trends and Best Practices, A. Maedche, A. Botzenhardt,
and L. Neer, Eds., ed: Springer, 2012, pp. 53-81.

[23] P. Lew, L. Olsina, and L. Zhang, "Quality, quality in use, actual usability
and user experience as key drivers for web application evaluation," in Web
Engineering, ed: Springer, 2010, pp. 218-232.

[24] J. Kirakowski and M. Corbett, "SUMI: The software usability
measurement inventory," British journal of educational technology, vol.
24, pp. 210-212, 1993.

[25] S. Elbaum, S. Karre, and G. Rothermel, "Improving web application testing
with user session data," in Proceedings of the 25th International
Conference on Software Engineering, 2003, pp. 49-59.

[26] S. Ran, "A model for web services discovery with QoS," ACM Sigecom
exchanges, vol. 4, pp. 1-10, 2003.

[27] M. Merzbacher and D. Patterson, "Measuring end-user availability on the
web: Practical experience," in Dependable Systems and Networks, 2002.
DSN 2002. Proceedings. International Conference on, 2002, pp. 473-477.

[28] R. Shuping, "A model for web services discovery with QoS," SIGecom
Exch., vol. 4, pp. 1-10, 2003.

[29] Z. Zheng and M. R. Lyu, "An adaptive QoS-aware fault tolerance strategy
for web services," Empirical Software Engineering, vol. 15, pp. 323-345,
2010.

[30] B. B. Madan, K. Gogeva-Popstojanova, K. Vaidyanathan, and K. S.
Trivedi, "Modeling and quantification of security attributes of software
systems," in Dependable Systems and Networks, 2002. DSN 2002.
Proceedings. International Conference on, 2002, pp. 505-514.

[31] J. Burby and S. Atchison, Actionable web analytics: using data to make
smart business decisions: Wiley. com, 2007.

[32] M. Houtermans, T. V. Capelle, and M. Al-Ghumgham, "Reliability
Engineering & Data Collection," in Systems, 2007. ICONS'07. Second
International Conference on, 2007, pp. 42-42.

[33] K. Hyun-Jong, L. Dong Hyeon, L. Jong Min, L. Kyoung-Hee, L. Won, and
C. Seong-Gon, "The QoE Evaluation Method through the QoS-QoE
Correlation Model," in Networked Computing and Advanced Information
Management, 2008. NCM '08. Fourth International Conference on, 2008,
pp. 719-725.

[34] N. Bhatti and R. Friedrich, "Web server support for tiered services,"
Network, IEEE, vol. 13, pp. 64-71, 1999.

[35] K. Mintauckis, "Empirical studies of Quality of Experience (QoE): A
Systematic Literature Survey," 2010.

[36] S. Lindskog and E. Jonsson, "Adding Security to Quality of Service
Architectures," in Proceedings of the SS-GRR Conference, 2002.

[37] A. Hamam, M. Eid, A. El Saddik, and N. D. Georganas, "A quality of
experience model for haptic user interfaces," in Proceedings of the 2008
Ambi-Sys workshop on Haptic user interfaces in ambient media systems,
2008, p. 1.

[38] P. Yadav and G. Gupta, "Depleting Clouds," International Journal of
Engineering, vol. 2, 2013.

[39] S. Egger, T. Hossfeld, R. Schatz, and M. Fiedler, "Waiting times in quality
of experience for web based services," in Quality of Multimedia Experience
(QoMEX), 2012 Fourth International Workshop on, 2012, pp. 86-96.

[40] K. Xiong and H. Perros, "Service performance and analysis in cloud
computing," in Services-I, 2009 World Conference on, 2009, pp. 693-700.

[41] ITU, "ITU-T P.800," in Mean Opinion Score(MOS) terminology, ed:
TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU,
2003.

[42] S. Jansen and E. Bloemendal, "Defining App Stores: The Role of Curated
Marketplaces in Software Ecosystems," presented at the 4th International
Conference on Software Business, Potsdam, Germany, 2013.

[43] C. Thuemmler, S. Fricker, O. Mival, D. Benyon, W. Buchanan, A. Paulin,
et al., "Norms and Standards in Modular Medical Architectures," presented
at the IEEE HealthCom 2013, Lisbon, Portugal, 2013.

http://www.fi-star.eu/

