
The effect of requests for user feedback on Quality
of Experience

Farnaz Fotrousi1,2 & Samuel A. Fricker1,2 &

Markus Fiedler1

The Author(s) 2017. This article is an open access publication

Abstract Companies are interested in knowing how users experience and perceive their
products. Quality of Experience (QoE) is a measurement that is used to assess the degree of
delight or annoyance in experiencing a software product. To assess QoE, we have used a
feedback tool integrated into a software product to ask users about their QoE ratings and to
obtain information about their rationales for good or bad QoEs. It is known that requests for
feedback may disturb users; however, little is known about the subjective reasoning behind
this disturbance or about whether this disturbance negatively affects the QoE of the software
product for which the feedback is sought. In this paper, we present a mixed qualitative-
quantitative study with 35 subjects that explore the relationship between feedback requests and
QoE. The subjects experienced a requirement-modeling mobile product, which was integrated
with a feedback tool. During and at the end of the experience, we collected the users’
perceptions of the product and the feedback requests. Based on the users’ rational for being
disturbed by the feedback requests, such as Bearly feedback,^ Binterruptive requests,^ Bfrequent
requests,^ and Bapparently inappropriate content,^ we modeled feedback requests. The model
defines feedback requests using a set of five-tuple variables: Btask,^ Btiming^ of the task for
issuing the feedback requests, user’s Bexpertise-phase^ with the product, the Bfrequency^ of
feedback requests about the task, and the Bcontent^ of the feedback request. Configuration of
these parameters might drive the participants’ perceived disturbances. We also found that the
disturbances generated by triggering user feedback requests have negligible impacts on the

Software Qual J
DOI 10.1007/s11219-017-9373-7

* Farnaz Fotrousi
Farnaz.fotrousi@bth.se

Samuel A. Fricker
Samuel.fricker@bth.se

Markus Fiedler
markus.fiedler@bth.se

1 Blekinge Institute of Technology, SE-371 79 Karlskrona, Sweden
2 School of Engineering, University of Applied Science and Arts Northwestern Switzerland FHNW,

5210 Windisch, Switzerland

http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-017-9373-7&domain=pdf
mailto:Farnaz.fotrousi@bth.se

QoE of software products. These results imply that software product vendors may trust users’
feedback even when the feedback requests disturb the users.

Keywords Quality of experience . QoE . User feedback . User perception . Human factors

1 Introduction

User feedback is essential for managing and improving software products (Pagano and Brügge
2013). User feedback informs software companies in identifying user needs, assessing user
satisfaction, and detecting quality problems within a system (Fotrousi et al. 2014). User
involvement is an effective means for capturing requirements, and, when feedback is consid-
ered in decisions about system evolution, it has positive effects on user satisfaction (Kujala
2003).

A well-known indicator for measuring user satisfaction is Quality of Experience (QoE).
QoE is defined as Bthe degree of delight or annoyance of the user of an application or service^
(Le Callet et al. 2012). The QoE indicator is sensitive to the fulfillment of user needs. High
QoE values reflect users’ enjoyment in using a suitable system (Bdelight^). Low QoE values
reflect users’ dissatisfaction in using an unsuitable system (Bannoyance^).

QoE is believed to be affected by three factors: the system, the context in which the system
is used, and the software users (Reiter et al. 2014). System factors include the properties and
characteristics of a system that reflect its technical quality, such as its performance, usability,
and reliability (ISO/IEC 25010). System characteristics reflect the Quality of Service (QoS) of
a product (Varela et al. 2014). The context reflects the user environment, which is characterized
by physical, social, economical, and technical factors. The users, ultimately, are characterized
by rather stable demographic, physical, and mental attributes, as well as more volatile
attributes, such as temporary emotional attitudes. When interpreting user feedback, all three
factors must be taken into consideration, since all of these factors, and not only the software
system, affect human emotions (Barrett et al. 2011).

Some studies have empirically evaluated the impacts of systems, their contexts, and human
factors on QoE. Most of these studies have investigated the impact of the system factor,
including, particularly, the QoS. For example, Fiedler et al. (2010) investigated a generic
relationship between QoS and QoE and presented a mechanism for controlling QoE in
telecommunication systems. Other studies have investigated the impact of the human factor
(Canale et al. 2014) or the context factor (Ickin et al. 2012) on QoE.

By nature, these impact evaluation studies necessitate frequently asking users for feedback
on software products, software features, groups of features, or users’ actions (e.g., pressing a
button). Especially in QoS-oriented studies, such feedback is necessary to interpret the
recorded QoS data (Fotrousi et al. 2014). Automated support for feedback requests enables
the quick and easy collection of data from a large number of users (Ivory and Hearst 2001).

However, asking for user feedback may disturb users and introduce bias in their QoEs.
Research has shown, for example, that users may be disturbed by badly timed (Adamczyk and
Bailey 2004; Bailey et al. 2001) or overly frequent feedback requests (Abelow 1993). While
research has objectively investigated the impact of feedback requests on users’ annoyance, no
work has yet subjectively investigated this issue or explored how users rationalize their
annoyance. Furthermore, the extant literature has not yet investigated whether the QoE of
the product under evaluation is affected by users’ annoyance. As a result, we do not know

Software Qual J

whether the QoE of a software product may be trusted in cases involving nuisance (Jordan
1998). This uncertainty is particularly important if nuisances are created easily and rapidly.

This paper evaluates whether disturbing feedback requests affect the QoE of a software product.
We used a simple probe to collect extensive user feedback, including quantitative QoE ratings and
qualitative user rationales. To generate a wide variety of feedback constellations, the probe was
triggered randomly as users were implementing a variety of tasks. Some of the users’ tasks required
little attention, while others required the users to concentrate. The random prompting of different
concentration levels for different tasks generated awide variety of situations in which the users were
asked for feedback. At the end of the product usage, a post-questionnaire was administered to
collect each user’s overall perception of the feedback requests and experience of using the software
product. We analyzed the collected data to identify the users’ rationales for being disturbed by the
feedback requests, to determine whether the feedback requests affected the quality judgment of the
software product, and to discover whether the feedback mechanism implemented in the probe was
used to provide feedback on the feedback requests.

The main contribution of this paper is an understanding of the extent to which disturbing
feedback requests affect users’ QoEs, which is an area that has been largely overlooked in
previous research. Meanwhile, based on users’ subjective reasoning for being disturbed by the
feedback tool, we propose a feedback request model, which parametrizes the characteristics of
the feedback request. Finally, we discover whether feedback tools can be used to capture the
disturbances of the feedback requests. The findings in this study will guide researchers and
practitioners in designing user feedback mechanisms to collect informative user feedback,
which will assist in enhancing software engineering activities, such as requirement engineer-
ing, user-based software development, and the validation of software products.

The remainder of the paper is structured as follows: Sect. 2 provides an overview of the study
background and related work. Section 3 describes the research questions, the research method-
ology, and the threats to validity. Section 4 describes the results and the analysis used to answer the
research questions. Section 5 discusses the results. Section 6 summarizes and concludes the paper.

2 Background and related work

User feedback reflects information about users’ perception of the quality of a software product.
Such perceptions can result in positive feelings such as delight, engagement, pleasure,
satisfaction, and happiness or negative feelings such as disengagement, dissatisfaction, sad-
ness, or even combinations of the feelings. The perception differs based on the users’
expectations (Szajna and Scamell 1993) in different social contexts (Van der Ham et al. 2014).

User feedback is captured in written, verbal, and multimedia formats directly from users or
indirectly through the interpretation of users’ activities. A questionnaire is an example of
methods gathering data in the written format by questioning user feedback. The user feedback
can be collected through a long questionnaire (Herzog and Bachman 1981) capturing more data
rather than a short questionnaire (Kim et al. 2008) capturing fewer data but from many users.
The short questionnaire can be paper-based or online-based forms. The short questionnaire may
also be triggered (Froehlich et al. 2007) regularly or at a particular moment of experiencing a
prototype or a released product. The annotating method is another example of written user
feedback that users provide comments or rates for snippets of an image (Ames and Naaman
2007) or a video (Fricker et al. 2015) when the users have some opinions to share. The interview
(Ahtinen et al. 2009) is an example of methods gathering verbal user feedback. The user

Software Qual J

feedback can also be recorded in the form of a multimedia such as an audio or a video. User
sketch method (Tohidi et al. 2006) is an example of methods for collecting the activity-based
user feedback. A user feedback tool includes one or multiple user feedback mechanism(s)
implementing one or multiple user feedback methods respectively for collecting user feedback.

The feedback is collected in the form of qualitative or quantitative measures. A qualitative
measure provides a verbal and comparative description of the users’ opinions.A quantitativemeasure
is a numerical form of data that is usually referred to a number. Mean Opinion Score (MOS) is a
known quantitative metric usually scaled ordinal between 5 and 1 (excellent, good, fair, bad, poor)
that subjects assign to their opinion (ITU-T 2003) to measure Quality of Experience (QoE).

Raake and Egger (2014) define QoE as the degree of delight or annoyance of a user, who
experiences a software product, service or system. QoE results from the evaluation of the user
whether his or her expectations are fulfilled in the light of the user context and personality. Quality
of Experience combines the terms Quality and Experience. Quality is an attribute of a software
product that refers to the goodness of the software product. Experience is an attribute of the user
entity that refers to the stream of users’ perception including feelings. QoE, as the combination of
the two terms Quality and Experience, is the user’s judgment of the perceived goodness of the
software as a cognitive process on top of the experience (Raake and Egger 2014).

Along with the development of a user’s experience, the perceived quality of the experience
is likely to change over time (Karapanos 2013). During the experience development, the user
initially gets familiar with the product and learns the product’s functionalities. The user
excitement and frustration generated in the familiarization phase may affect the QoE of the
software product. However, when the user establishes the functional dependency and is
attached emotionally to the software product in the next phases (Karapanos 2013), the
judgment of the QoE would be more accurate.

The system, the context, and the human factors may also impact on the judgment of users’
perception and affect QoE of a software product (Reiter et al. 2014; Roto et al. 2011). The three
factors reflect the reason behind a particular perception of a user in an experience. Context and
human factors can determine how the system factors impact on QoE (Reiter et al. 2014). As an
example, the same software product may leave different quality perceptions when this is used on
a small-size touch screen phone in a car or on a personal computer at home.

The system factors point out to the technical characteristics of a software product or services.
The functionality of a software product, delay in data transmission, and a content of a media are
examples of the system factors. Most of the system factors are relevant to the technical quality of
the product or service referring as Quality of Service (QoS). TheQoS factors are about the end-to-
end service quality (Zhang and Ansari 2011), network quality (Khirman and Henriksen 2002),
and suitability of service content (Varela et al. 2014). The QoS factors tends to differ among
application domains like: speech communication (Côté and Berger 2014), audio transmission
(Feiten et al. 2014), video streaming (Garcia et al. 2014), web browsing (Strohmeier et al. 2014),
mobile human-computer interaction (Schleicher et al. 2014), and gaming (Beyer and Möller
2014). As an example in speech communication (Côté and Berger 2014), the quality of the
transmitted speech such as loudness, nearness, and clearness may affect QoE.

The context factors refer to the user environment characterized by physical, temporal,
economical, social, and technical context factors (Reiter et al. 2014). We can exemplify the
physical, temporal, social, and economical factors respectively by an experience occurs in an
indoor or outdoor physical environment, in a certain time of day, based on an individual or a
group work experience and with a specific subscription type. The technical context factors are
the system factors that are contextually related to the software product or service. As an example

Software Qual J

of the technical context factors, we can mention the characteristics of the feedback tool and a
device that the software product has interconnection with, such as the design layout, screen size,
and resolution of the device (Mitra et al. 2011).

The human factors characterize demographic, physical nature, mental nature, and emotional
attitudes of human users (Le Callet et al. 2012). The level of expertise and visual acuity of users are
examples of demographic and physical factors, respectively. Needs, motivations, expectations, and
moods exemplify themental factors. Among the human factors, the emotion factor has the strongest
relationship with experience (Kujala and Miron-Shatz 2013). For example, the user’s frustration in
an experience may turn into anger, and the pleasant experience makes the user happy. The users’
perception of the product’s quality is influenced by a variety of emotions (Fernández-Dols and
Russell 2003). Therefore, emotions are important factors to be considered while studying QoE.

There are studies that have empirically evaluated the impacts of the system, context, and
human factors on QoE of a product or service. Fiedler et al. (2010) investigate a generic
relationship between system factors and QoE. The authors present a QoE control mechanism,
where MOS is a function of QoS metrics such as response time in the telecommunication area.
Ickin et al. (2012) investigated the factors that influence QoE in mobile applications. The study
findings reveal the effect of context factors such as battery efficiency, phone features, and cost
of application or connectivity on QoE. The study also showed the effect of human factors such
as user routines and user lifestyle on QoE. Such impact studies are dependent on a frequent
automatic collection of user feedback to interpret the quantitative analytics of the system
quality that are also automatically collected. Automatic frequent asking for user feedback may
disturb users and may bias the judgment of users for QoE of the software product.

We found no work that evaluated whether the request for feedback would affect QoE of a
software product. It is quite imaginable that a feedback request would be a part of the system,
context, and human factors that influence on QoE. Triggering the feedback requests, whose
functionality may be perceived as a part of the product (i.e., system factor), interrupts the user’s
task. The interruption that occurs in a certain context like mobile context (i.e., context factor)
may disturb the user (i.e., human factor) especially when the user perceives performing the
task as the primary and providing the feedback as the secondary task (Adamczyk and Bailey
2004). Disturbing the user by the feedback requests prompts user’s perception that causes a
sensation or set of sensations toward a negative emotion (Solomon 2008). However, there is a
gap in the literature whether the negative emotion caused by the feedback requests would be a
factor that influences on users’ perception of the software product quality.

Lack of understanding users’ rationale for being disturbed by the feedback requests and the
relations between the feedback requests and QoE of a software product would make the
product owner unable to judge the appropriateness of the collected user feedback. In spite of
appropriate feedback requests that motivate users to provide rich effective feedback (Broekens
et al. 2010), inappropriate feedback requests may bias the collected user feedback that may
affect the reliability and robustness of the decisions, which the product owner makes.

3 Research methodology

3.1 Objectives

The overall objective of this study is to evaluate whether the feedback mechanism affects the
feedback obtained about the software product. We aim to determine whether a disturbing

Software Qual J

feedback request negatively affects users’ perceptions of the software product for which the
feedback is requested. Therefore, we look for identifying the subjective disturbing aspects of
feedback requests during the collection of feedback for a software product. We study whether
the interruption is the only disturbing factor and, if not, seek to identify other possible
disturbing factors of a feedback request based on users’ reasoning. Finally, we seek to discover
whether the feedback mechanism that disturbs users is useful for collecting feedback about
such disturbances. Feedback about the disturbances informs product owners of the problems
that the users have experienced with the implemented feedback mechanism.

We summarize the objectives as follows:

OBJ1: Understanding users’ reasoning for being disturbed by feedback requests
OBJ2: Finding out the extent to which disturbing feedback requests affect users’ perceptions

of a software product’s quality
OBJ3: Understanding whether user feedback is helpful for understanding the disturbances

caused by feedback requests

3.2 Research questions

We designed the study to answer the following research questions (RQ1, RQ2, and RQ3),
which we mapped to the above objectives (OBJ1, OBJ2, and OBJ3, respectively):

RQ1: How do users rationalize the disturbance of feedback requests?
RQ2: To what extent do disturbing feedback requests affect the QoE of software products?
RQ3: Do users provide feedback about feedback requests?

The overall research efforts help to discover whether the collected user feedback can be trusted
even if the users are disturbed by the feedback collection process. The answer to RQ1 determines
the aspects of feedback requests that could disturb users. Using these findings, we model
feedback requests corresponding to a software product. The model guides the selection of a
suitable feedback mechanism to assist researchers and practitioners in collecting unbiased
feedback. The answer to RQ2 identifies the relationship between the feedback requests and the
users’ perceptions of the quality of a software product. The answer to this question helps
practitioners ensure that their feedback tools do not influence the quality of users’ perceptions
of a software product’s quality. The answer to RQ3 identifies whether users provide feedback on
feedback requests when they are asked to give feedback about the software product. This answer
will guide researchers and practitioners in determining whether they can use the user feedback
provided for a software product to evaluate the feedback requests generated by the feedback tool.

3.3 Study design

The study used a mixed qualitative-quantitative research approach, which was designed based
on multiple embedded case studies (Yin 2014). Figure 1 presents an overview of the study
design to address the research questions. For the data collection, a feedback tool was used to
request feedback randomly from participants while they were using a software product. At the
end of the product’s usage, the users’ perceptions of the feedback requests and the experiences
of using the product were collected through a post-questionnaire. The user feedback about the

Software Qual J

software product during usage, as well as the user feedback that was provided in the post-
questionnaire about the feedback requests and the software product, was analyzed individually
to answer the research questions.

3.3.1 Selection of the software product and the feedback tool

As the unit of analysis, we investigated individuals’ feedback to determine whether the
feedback was about the software product or about the feedback requests. All participants in
this study used the same software product and the same feedback tool with the same
configuration for requesting feedback.

The QoE probe described by Fotrousi (2015) was used as the feedback tool for collecting QoE
data from a requirement-modeling software called Flexisketch (Golaszewski 2013; Wüest et al.
2012, 2015). We integrated the QoE probe into the Flexisketch tool. Figure 2 presents a user

Fig. 1 Overview of the study design

Fig. 2 Feedback tool

Software Qual J

interface of the feedback tool. This tool generated requests for feedback continuously and
randomly in the middle of users’ interactions with a software product. The feedback tool asked
participants to rate their experiences with the feature that they had just used and to provide a
rationale for their choice. Although the time and frequency of requests could be configured, in this
study, a sample configuration was set up that allowed the user feedback to be collected randomly.

3.3.2 Participants

The participants were 35 software engineering students at the graduate level, who were
familiar with the concepts of requirement modeling. Attempts were made to achieve as large
variations as possible among the participants. The participants varied in age, requirement
modeling knowledge, and experiences with a requirement-modeling tool.

3.3.3 Study procedure

From the perspective of the participants, the primary goal of the assigned task was to
evaluate hands-on requirement engineering practices. The participants were free to
complete the assigned task at anytime and anywhere that they find suitable within the
given deadline of 2 weeks. The assigned task in the course was not graded; however,
if the students could pass the assignment, they were rewarded with better grades in
their two other course assignments. The course assignment was not mandatory, and
the students who were not interested in this assignment could skip that and choose
alternative an assignment to receive the same reward.

The participants, in their roles as requirement engineers, were asked to translate a
real-world requirements walkthrough into a requirements model. The participants had
to complete their tasks individually by studying the provided workshop video of a
Drug Supply Manager solution, analyzing the discussed requirements, and modeling
the requirements.

The video was captured from a requirement engineering workshop, where the participants
were discussing the issues related to the distribution of drugs to patients. The issues could
impact the safety of the patients. A requirement engineer, two pharmacists, a patient represen-
tative, a software developer, a solution architect, a medical device expert, and a barcode
technology expert were attending the workshop. In the workshop video, the pharmacists,
among other participants, were looking for a solution to be able to trace back the drug packages
in the supply chain, using a globally unique barcode.

In the current study, all participants received the same task to model the requirements
defined during 15 consecutive minutes of the video. The participants could choose any 15
consecutive minutes of video that they intend to model. The desired models were modeling
diagrams such as a use-case, activity, and class diagram. Each participant could model the
requirements using even more than one diagram. The participants were free to choose the
modeling type and notations. They were told to ensure that the model specified what the
stakeholders had defined during the chosen part of the video.

The participants were asked to draw their models in the Flexisketch tool installed on their
touch screen devices. Once they accessed anAndroid tablet, Android smartphone, or amultitouch
screen PC, they needed to install the Flexisketch and QoE probes based on the provided
guidelines. Alternatively, they were able to use one of the laboratory’s tablets to complete their
task. The participants received an instruction document providing all required information.

Software Qual J

So, each participant used Flexisketch (i.e., a modeling tool), integrated with the QoE probe
(i.e., a feedback tool), to model the requirements extracted from the video workshop. While the
participants were modeling the requirements, a QoE questionnaire was automatically triggered
by the completion of a feature to ask for user feedback. In the feedback tool, the probability of
automatic triggering of the questionnaire was set to 10%.

The user feedback was collected across different features of the modeling tool representing
a range of complexities, since complexity is a factor affecting users’ concentration and task
performance (Zijlstra et al. 1999). For example, Bsave^ is a simple feature with low complex-
ity: a user simply presses a button to save the model. By contrast, the Bmerge^ feature for
merging two objects of the model is not straightforward and is categorized as a high-
complexity feature. When the participants completed the modeling, they were expected to
save the model, export it as an image, and then create a short requirement document including
this image. The participants were free to complete the assigned task at anytime and anywhere
that they find suitable within the given deadline of 2 weeks.

In the last step, the participants were asked to fill in a paper-based post-questionnaire. The
questionnaire included two groups of questions about the modeling tool and the triggered
feedback requests.

3.3.4 Data collection method

The data collection was performed using open- and closed-ended questions in two steps of the
study procedure:

1- During the usage of software product: While the participants were using the requirement
modeling tool, the feedback tool was triggered randomly (Fig. 2) to collect the partici-
pants’ QoEs (i.e., ratings of their experiences) with the features that they had just used in
the modeling tool. The feedback tool also collected the participants’ rationales, which
justified the ratings.

2- Following usage of the software product: After completing their work with the software
(i.e., modeling tool), the participants were asked to answer a paper-based post-question-
naire. In the post-questionnaire, we started with general questions about the users’ expe-
riences including whether the participants had previous experience working with
Flexisketch, similar requirement-modeling tools and Drug SupplyManager systems. Then,
the participants were asked the starting time of the video that they had chosen for modeling
and the time spent on the modeling tool. Later, we formulated two questions asking for
participant feedback. The first question underlined the disturbance term, as identified in the
first research question, to determine users’ reasoning for being disturbed. In this question
(Q12 in Table 3, Appendix), we also sought to identify the negative influences of feedback
requests on modeling activity disturbances. The second question (Q9 in Appendix), asked
for the overall user feedback on the software product. The questions about the feedback
requests and the software product were formulated as follows:

–Feedback requests –

How good was the QoE probe in minimizing the disturbance of your modeling work?
Bad (1)Poor (2) Fair (3) Good (4)Excellent (5)
Please explain why you feel that way: _________________.

Software Qual J

–Software product –

How good was Flexisketch as a tool for modeling requirements?
Bad (1)Poor (2) Fair (3) Good (4)Excellent (5)
Please explain why you feel that way: _________________.

To design the two questions, we used a 5-point Likert scale, including a mid-point (i.e., Fair
(3)), to avoid negative ratings in the absence of a middle point (Garland 1991).

3.3.5 Data analysis method

The questions RQ1 and RQ3 were answered using a qualitative content analysis approach. To
answer RQ2, which is the core research question of this study, we triangulated the analysis
using content analysis, pattern matching, and statistical correlation analysis methods. The
statistical descriptive analysis was also used to support discussion.

Content analysis The analysis procedure followed inductive and deductive content analysis
approaches (Elo and Kyngäs 2008). The inductive approach was conventional, with the
objective of coding data freely to generate information, and the deductive approach was based
on the use of initial coding categories, which were extracted from the hypothesis, with the
possibility of extending the codes (Hsieh and Shannon 2005).

Inductive content analysis Since prior knowledge on the phenomenon was limited, we
performed an inductive content analysis to find answers for RQ1 and, partially, RQ2. The
study started with the collection of qualitative feedback, which participants provided for the
feedback requests (issued by the QoE probe) and the software application (Flexisketch) in the
post-questionnaires. The analysis was conducted in the following four steps:

Step 1 —Perform initial coding: Participants’ quotes, which referred to their qualitative
feedback, were analyzed separately. For each quote, we underlined all terms that
could have some relation to reflections of participants’ experiences or the impact of
the software product on the participants’ perceptions. We then read each quote again
and wrote down all relevant codes. We repeated the process one by one for all quotes.

Step 2 —Form final codes: We grouped the initial codes to form final codes based on shared
characteristics, which put different codes in the same categories. For example, the
vocabularies that were synonyms or had the same or similar stems, meanings, or
relevancies were organized in the same category of codes. Observations in other
quotes also assisted in the creation and renaming of the final codes. Such groupings
reduced the number of codes and increased our understanding of the phenomenon. As
examples, the initial codes of Btime-to-time,^ Bevery tap,^ Bkeep pop up,^ Btoo often
pop up,^ and Bfrequently^ all referred to the frequency of the feedback requests; these
formed the final code Bfrequent request.^

Step 3 —Form categories: We created categories based on a general overview of the final
codes. The categories were formed based on the patterns that we recognized within the
quotes and, in some cases, our interpretations of the quotes’ meanings (Potter and
Levine-Donnerstein 1999). Categories merged into a higher level when the merging
made sense. The categories were developed independently by the first and second

Software Qual J

authors, and the final categories were decided in a joint meeting based on a Bchain of
evidence^ tactic (Yin 2014). The correctness of the categories was later evaluated by
the third author. Then, we organized the final categories in a matrix, comprising the
connections between the participants’ quotes and the categories used by the final
codes as elements. As explained in Sect. 4.1, the content analysis concluded the matrix
by including three categories: kind of user perception, consequence of disturbance,
and characteristics of feedback requests. Characteristics of feedback requests were
also divided into the sub-categories of task, timing, experience phase, frequency, and
content.

Step 4 —Perform abstraction: In the last step, based on the extracted categories, we
performed an abstraction that led to a generic model. We interpreted and discussed
this model based on the quantitative data of the given QoE ratings for the feedback
requests and the software product.

Deductive content analysis To answer RQ3, we performed a deductive content analysis.
The results of this section could also support RQ2. The research was initiated with the
following hypothesis formulation:

H: Participants provide feedback for the feedback requests during their usage.

Then, initial categories of codes were organized. The qualitative feedback that participants
provided during the usage was coded to test the hypothesis. The analysis was conducted in the
following three steps:

Step 1 —Development of an analysis matrix. We developed a matrix to connect the
participants’ quotes and the initial categories of codes. The connections were
filled with the coding data provided in step 2. We used an unconstrained
matrix with the possibility to extend the categories during the data coding.
We expected that participants would provide feedback in the categories for
feedback request, software product attributes, and device attributes. The first
category was defined based on the hypothesis, and the next two categories
were factors affecting the QoE of a product, as identified before through the
inductive content analysis.

Step 2 —Data coding: We reviewed all comments and coded in relevance to the defined
categories in step 1. Although we aimed for an unconstrained matrix, no new
categories were recognized during the coding. However, new sub-categories were
identified. For example, for the software product attributes, we found a performance
sub-category as a quality attribute that had not been identified during the inductive
content analysis.

Step 3 —Hypothesis testing: The coded matrix was a good tool for easily testing the
hypothesis. Exploring the codes identified whether any feedback was available about
the feedback requests.

Pattern matching Part of the analysis to answer RQ2 used a pattern-matching analytical
technique (Yin 2014). In the pattern matching, a hypothesis to be tested—a so-called predicted
pattern—was compared with the observed patterns that were concluded empirically.

Software Qual J

Section 4.2.1 shows the results of the pattern matching research. We performed the pattern
matching in the following four steps:

Step 1 —Formulate hypothesis: We formulated the research hypothesis in alignment with the
research question. The research hypothesis is referred to as the predicted pattern
during the study. This pattern was formulated as an if-then relation, where the if
statement is the condition and the then statement is the outcome. We used an
independent variable design with the Bsufficient condition proposition^ (Hak and
Dul 2009), meaning that the outcome of the pattern is always present if the condition
defined in the proposition is present. Therefore, if alternative patterns in the absence
of the condition are confirmed, the hypothesis is disconfirmed. The hypothesis was,
thus, formulated as follows:

H-P: The Quality of Experience (QoE) of the software product is always perceived to
be bad if the feedback request disturbs the participant.
The outcome (i.e., BThe Quality of Experience (QoE) of the software product is
perceived to be bad^) was always present if the condition (i.e., Bif the feedback
request disturbs the participant^) was present.

Step 2 —Select appropriate cases: To investigate the hypothesis, we look for alternative
patterns involving the outcome in the predicted pattern (i.e., Bthe QoE of the software
product is perceived to be bad^). The absence of the outcome was the criterion for
selecting cases. We chose cases in which the participants rated the QoE of the
software product as good and then, from among these selected cases, looked for
the presence or absence of the condition, as defined in the predicted pattern (i.e., Bif
the feedback request disturbs the participant^).

Step 3 —Observe patterns to test the hypothesis: We observed the conditions in the selected
cases and then formulated the observed patterns as the result of this step. We
conducted our observation in a matrix with two dimensions for the QoE of the
software product and the QoE of the feedback request. We also used the participants’
justifications in the qualitative feedback relevant to the selected cases to increase the
reliability of the observations.

Step 4 —Formulate test results. This step reported the confirmation or disconfirma-
tion of the hypothesis. If the investigation could show observed patterns in
the absence of the condition, it would be sufficient to disconfirm the
hypothesis.

3.3.6 Statistical analysis

We used a correlation analysis to measure the relationships among the observed variables. As
part of RQ2, we used the Pearson and Spearman correlation coefficient methods to investigate
the linear and monotonic relationships between the QoE of the software product and the QoE
of the feedback request, respectively. Furthermore, throughout the study, descriptive analysis
statistics, such as average and median, were used to provide supportive information for the
discussion.

Software Qual J

3.4 Threats to validity

Following the classifications in the qualitative study (Yin 2014) and the content analysis
(Potter and Levine-Donnerstein 1999), we analyzed threats to validity. We also addressed the
threats regarding student participation (Carver et al. 2003).

Reliability We interpreted reliability as the rigor and honesty with which the research has
been carried out. Threats to reliability affect the repeatability of the study (i.e., the ability to run
the study again and achieve the same results). To address potential threats to reliability, we
developed a study protocol, collected all data in a study database, and used triangulation as the
main strategy for answering the research questions (Golafshani 2003). We performed data
triangulation by collecting data during and after the use of the application and considered both
quantitative and qualitative data. We combined quantitative and qualitative approaches for the
data analysis. The second and third authors of the study reviewed the results and the analysis
performed by the first author.

A key concern was the coding of the collected qualitative user feedback (Potter and Levine-
Donnerstein 1999). To mitigate coding problems, the first author documented the design of the
content analysis and developed detailed coding rules in a guideline that ensured that the other
researchers would make the same decisions when selecting codes. The authors reviewed the
coding and discussed conflicting coding results. Inaccurate punctuation and mistyped words
sometimes changed the entire meaning and interpretation of a user’s feedback. In cases in
which the user’s intended meaning was unclear, the quote was removed from the analysis.

Internal validity The threat is the extent to which the results may have been biased by
confounding factors. One of the risks in this study was that the users might be disturbed by
another stimulus, such as their devices or the physical environment, rather than by feedback
requests. We captured the causes for such disturbances using the qualitative feedback received
from the users during and after their experiences with the software product. Capturing these
factors assisted us in distinguishing them during the analysis.

One factor that could have biased the entirety of the study results was the participation of
students. The participating students could have felt incentivized to provide the results that their
teacher(s) expected. To mitigate this threat, the first author, who executed the study, was not
involved in the teaching of the concerned course. In addition, the assignment was optional for
the students and not graded. The participants could voluntarily select either this assignment or
another alternative assignment of comparable effort and difficulty. The participants could also
opt out at any moment and choose to do another assignment.

Insufficient information for the participants is another potential confounding factor, which
could affect users’ disturbance. To mitigate this threat, we informed the participants that the
task was part of a research project and explained the roles of the QoE probe and the
Flexisketch. The participants also had access to the post-questionnaire in advance. Further-
more, we informed the participants about the monitoring of their usage data, which would be
kept anonymous. Such monitoring data could be used to enhance internal validity and, to some
extent, replace the actual observation of the participants as they performed their tasks.

External validity External validity concerns the ability to generalize the results obtained
from a study. In this study, fourth-year software engineering students participated as subjects.
They did not have knowledge of user feedback research, but they had been introduced and

Software Qual J

extensively trained in software engineering, including in theory and team projects. In a
comparable rating and feedback study, Fricker et al. (2015) could not identify discernable
differences between student ratings and ratings of industry subjects and noted that their
positive and negative feedback were congruent. Similarly, Höst et al. (2000) could observe
only minor differences in the conception, correctness, and judgment abilities of last-year
students and professionals. Not only the number of analysis units (i.e., user feedback) but
also the number and kind of case (i.e., modeling of Drug Supply Management requirements)
are important for generalizability.

The findings contribute toward generalization as they are applicable to the cases with similar
characteristics. For instance, the findings can be applied to the cases where the users require a
high level of creativity and interaction with the software (e.g., Adobe Photoshop modeling
software) to perform their tasks. However, as Kennedy (1979) recommends for a single case,
we leave the judgment for generalizability of the case to the practitioners, who wish to apply the
findings, to determine whether the study’s case is applied to their own case. In the end, to
corroborate further generalization of the research results to other settings, similar research
studies with other types of subjects and different software products should be conducted.

Construct validity Construct validity reflects whether a study measures what was supposed
to be measured. The risk in this research was that the participants might provide feedback
without really experiencing the requirements modeling product or that, in the event of this
experience, they might not provide sufficient evidence in their feedback to answer the research
questions. To mitigate the threat of students providing feedback without experiencing the
product, the study protocol forced the participants to report the results they had achieved with
the software product. In this protocol, we also established a chain of evidence to ensure that the
categories were defined correctly during the content analysis. We also reported the analysis by
making explicit (e.g., by reporting quotes at appropriate places) how our answers to the
research questions were based on the data we collected.

Furthermore, in real environment, users could perform such tasks within few hours.
However, the time pressure on the participants for performing their tasks could be a risk that
might result in reducing the quality of the answers (Sjøberg et al. 2003). The time pressure
might make the participants more anxious and lead different judgment (Maule et al. 2000) on
the given user feedback. To reduce the threats to validity, the design of our study allowed the
participants to perform their task in a relax time within 2 weeks.

The complexity of tasks is another threat to construct validity as different complexity might
cause a different level of concentration and task performance (Zijlstra et al. 1999). Therefore,
we considered several variations in our design to cover a wide spectrum of complexities from
low-complexity (e.g., pressing a button, or watching a simple and understandable video) to
high-complexity (e.g., merging two objects) tasks.

4 Results and analysis

The results show that the 35 study participants were from Europe (42.9%), China
(42.9%), Africa (8.6%), and the Middle East (5.7%). Of the participants, 22.9% were
female, and 77.1% were male. All were aged 23 to 37 years old, with the mean of
25.7 years. Table 1 gives an overview.

Software Qual J

None of the participants had previously experienced the requirement modeling tool and
Supply Manager applications. To conduct the task, the participants used several models of
Android tablet and Android smartphone, and no use of a multitouch screen PC was reported.
They participants reported their duration of using the requirement modeling tool. The re-
sponses ranged from 2 h to 4 days. From the answers collected during the post-questionnaire,
the participants rated the feedback requests and the software product in the range of Good (4)
to Bad (1), with a median of Fair (3). No Excellent (5) rating was collected.

Table 2 shows the number of submitted feedback on the software product or feedback tool.
According to the usage log, 25 participants provided feedback on the software product during
runtime. Although the 10 remaining participants had seen the feedback tool at least 2 times
while performing their task, they did not submit any feedback, i.e., They declined the feedback
requests. Based on the instructions given to the participants, the participants were able to
decrease the likelihood of triggered feedback requests or deactivate the feedback requests. Ten
user feedback less on software products means that we missed some qualitative feedbacks at
the feature level, which was not critical of our analysis.

The participants submitted a total of 441 QoE ratings and 60 valid feedbacks that justified
these ratings during product usage (64 feedback rationales were provided, in which four were
made of meaningless letters or symbols). The QoE ratings were distributed in the range of
Excellent (5) to Bad (1) (i.e., Excellent (5) 70, Good (4) 133, Fair (3) 77, Poor (2) 89, Bad (1)
72 feedback). The users provided rationales when they had both positive and negative
perception (i.e., Excellent (5) 7, Good (4) 13, Fair (3) 8, Poor (2) 22, Bad (1) 10 feedback).
The median of QoE ratings with rationale and without rationale (i.e., Poor (2) and Fair (3),
respectively) shows that the participants have more justified the feedback ratings when they
had a negative perception.

All participants returned the post-questionnaire. Thirty-three provided rationales for the
ratings, while two did not. Figure 3 gives an overview of the QoE ratings of the software
product and the QoE rating of the feedback requests that have been collected from the post-
questionnaire. As presented in the top-left chart, the perceived quality of the feedback requests
was less than the perceived quality of the software product. Since the scale defined for the QoE
rating was the Opinion Score, an ordinal scale, we calculated the median as the measure of

Table 1 Distribution of participants: country (left) and gender (right)

Country Gender

Africa China Europe Mid-East Total Male Female Total

Frequency 3 15 15 2 35 8 27 35
Percentage 8.6 42.9 42.9 5.7 100.0 22.9 77.1 100.0

Table 2 Number of submitted feedback

Feedback on software
product (usage log)

Feedback on software product
(post-questionnaire)

Feedback on Feedback tool
(post-questionnaire)

Usage log QoE rating Rationale QoE rating Rationale QoE rating Rationale

Participants 25 25 35 33 35 33
Total feedback 441 60 35 33 35 33

Software Qual J

central tendency: MedianQoE of feedback requests = 2, MedianQoE of software product = 3, equivalent to
the Poor (2) and Fair (3) levels, respectively. The levels show that the participants were
disturbed by the feedback requests. The software product was appreciated better, even though
clearly not excellent. According to 5-point Likert scale used in designing questionnaires as
well as our non-parametric statistical test, levels 2 and 3 are significantly different. The level 2
refers to unsatisfactory perception, while 3 shows the mid-point referring to uncertain
perception.

Figure 4 shows an analysis of the influence of cultural diversity on QoE. For the majority of
countries, MedianQoE of feedback requests = 2. The Chinese participants differed with a median
QoE rating of 3. In addition, MedianQoE of software product = 3, except for the participants from
Middle East, who rated the software product to be Good (4). No country reversed the results
shown in Fig. 3, suggesting that cultural differences had no effects that would reverse the study
results. The participants were disturbed more by the feedback requests than by the software
product, and the Good (4) ratings were likely due to the small number of participants.

Fig. 3 Distribution of the participants’ ratings for the QoE of the feedback tool and the QoE of the software product
according to the post-questionnaire. The QoE scales reflect the Opinion Score from Bad (1) to Excellent (5)

Fig. 4 Distribution of the participants’ ratings for the QoE of the feedback tool and the QoE of the software product
according to the post-questionnaire. The QoE scales reflect the Opinion Score from Bad (1) to Excellent (5)

Software Qual J

4.1 Modeling of feedback requests

Based on the qualitative analysis below, we modeled a feedback request according to the users’
reasoning for the disturbance level of the feedback tool. As presented in Eq. 1, our model
defines a set of feedback requests for each product (p) and user (u). Each product (p) and user
(u) belongs to the set of available products (P) and users (U), respectively. The FRs are a set of
five-tuple variables referring to the user task (ta), the timing of the feedback request within a
task (ti), experience-phase (e), the frequency (f) of the feedback request, and the content (c) of
the feedback request.

FR ¼ ta; ti; e; f ; cð Þ j p∈P; u∈Uf g ð1Þ
Model for user feedback requests developed from the inductive content analysis.
The user’s task (ta) refers to the type of activity the user was performing with the software

product when a feedback request was issued. The important user’s tasks were modeling
requirements and managing the model, e.g., by saving it. The timing (ti) is the moment within
the user’s tasks when the feedback request has been issued. The expertise-phase (e) refers to
the user’s stage of understanding and mastery of the product at the moment of the feedback
request. For example, in a modeling tool, the experience-phase can refer to the learning period
at the beginning of an experience. The frequency (f) of a feedback request refers to the
maximum number of times that feedback is requested in a specific timing and expertise-
phase relevant to the task. The content (c) refers to the questions included in a feedback
request. The values for any of these variables might drive the perceived disturbances.

The feedback request model is a result of the inductive content analysis described in the
Content analysis in Sect. 3.3. During the content analysis, we identified that the participants’
quotes referred to three main categories: kind of user perception, consequence of disturbance,
and characteristics of feedback requests. Characteristics of feedback requests could be divided
into the sub-categories of task, timing, experience phase, frequency, and content. Each of the
variables ta, ti, e, f, and c reflect one of these identified categories.

The categories were identified based on the users’ subjective reasoning for disturbing
feedback requests. The following disturbing issues were identified:

– a feedback request that was interrupting a user task;
– a feedback request that was issued to the user too early before the user experienced

enough and understood the product;
– a feedback request that was issued too frequently; and
– a feedback request with apparently inappropriate content.

The first three factors were mapped to the timing within a task, the expertise-phase, and the
frequency of the request for the task. The fourth factor concerned the content of the feedback
request and the functionality provided to allow the user to give feedback. In the following, we
show the users’ reasoning for the disturbance of feedback requests. These are supported by the
participants’ quotes (written in italic fonts within quotation marks) to improve the credibility of
the discussion.

The participants perceived that the tasks were interrupted at the macro-, meso-, and micro-
levels. The participants provided their rationales for being disturbed in macro-level (e.g.,
modeling), meso-level (e.g., drawing diagrams or working with features, such as locating
UML elements), and micro-level (e.g., performing an action, such as a click). Although the

Software Qual J

interruption was generated at the meso-level (end of using features), however, some partici-
pants perceived the interruption in the micro-level. We argue that this incorrect perception
could be due to less than a second delay of showing the feedback form. Also, another reason
could be due to fragmentary user’s action, where the system recognizes it as the end of using
the feature (e.g., releasing the mouse button in the middle of drawing a line that the system
identifies a new line). The interruption was more disturbing when the task required
concentration.

B… Let me put an example, if I want to put down a square, add a text and put the text in
the square, then I don’t want to be disturbed while doing that. I don’t mind if QoE Probe
disturbs me after I’ve done this few concatenated steps, but this was not the case. It kept
interrupting me ...^
B… sometimes you could lose a bit track of a thought process and when that happened it
was quite annoying …^
BIt was annoying as it asked while I was drawing and then only half the line was
finished.^

A feedback request that came too early before the user had the chance to really understand
the product disturbed participants, because the user expertise of whom received early feedback
requests was still in the learning phase and familiarization with the product. In response to an
early feedback request, a participant was unable to judge a product, feature, or action, and the
judgment risked not reflect sufficiently complete, accurate, or correct feedback.

BI think it should leave at least a week for users to experience the app[lication], then they
will have a better understand and experience of the Flexisketch.^

The frequent feedback that was requested at multiple times during a task disturbed users.
Frequent requests increased perceptions of disturbance when the same feedback requests were
repeatedly asked for the same feature or action. Sometimes, the feedback request was issued so
frequently that the participants perceived that the main goal of the study was to disturb them.

BWay too intrusive as it came up way too often.^
BI had to write feedback multiple times for some features, while for others—never.^
BIt felt as if the entire purpose of the QoE Probe was to disturb my modeling work.^

The feedback that was requested frequently encouraged participants to discover the mech-
anism behind triggering the feedback questionnaire. Due to the ambiguity of this mechanism,
the users could even lose sight of the main objective of the feedback requests.

BIt was really disturbing, it disappears after a while, but again I don’t know it was on me
or the system that solved it.^
BTo be honest I do not know why I need to install it.^

The content of a feedback request was also mentioned as a disturbing factor, although its
impact level (relevant to participants’ ratings) was not considerable. The participants
complained that the feedback requests had limited functionalities.

B The function [of feedback requests] is quite limited …^
B… the functions [of feedback requests] are not as good as I wished.^

Not only did unsuitable feedback requests disturb the participants, but the participants also
expressed feelings of annoyance and disengagement.

Software Qual J

BThe interruptions were too many and not welcome.^

Such feelings consequently affected the quality of the provided feedback and the quality of
the participants’ performance on the main tasks in the experience. Disturbed participants might
be discouraged regarding the provision of feedback, or they might provide inaccurate feed-
back. Furthermore, participants’ task performance was reduced when the participants lost track
of their thoughts and forgot their next tasks due to the interruptions. Such disturbances
encouraged participants to take action, such as uninstalling the feedback tool.

BSince it pops up in the middle of working on a diagram, you don’t have much will and
time to think truly carefully before answering. This probably means that the results
aren’t as accurate as one could wish for.^
B…I felt it disturbing most when the QoE came up in the middle of me having an idea I
needed to model. By the end of my feedback, I almost forgot what I was about to model,
which was for me very annoying. …^
Bit disturbed my modeling quite a lot I was almost tempted to uninstall it.^

The majority of participants who mentioned higher levels of disturbance or efforts to take
give-up actions, such as uninstalling the feedback tool in their quotes, rated the QoE of the
feedback tool as a 1 or a 2. However, the participants rated the QoE of the feedback tool as a 3
or a 4 when they did not recall a high disturbance level; instead, these participants used
occasional adjectives, such as Bsome^ or Bsometimes,^ to describe their disturbances due to
frequent/interruptive feedback requests.

4.2 The effect of disturbing feedback requests on the QoE of a software product

Disturbing feedback requests have a negligible impact on participants’ perceptions of the
quality of software products. The QoE of a software product does not correlate with the
disturbance ratings of the feedback requests. The results show that the QoE of a software
product might not be degraded even by participant feelings of disturbance related to the
feedback requests. Even though the feedback request characteristics discussed in Sect. 4.1
might disturb the participants, the quality of the software (i.e., 97% of the quotes) and the
context such as the device quality (i.e., 42% of the quotes) served as the focal points of
arguments to justify the QoE ratings.

The study’s results were triangulated with three individual analysis methods to
facilitate studying the phenomenon from different angles. This section details these
analyses.

4.2.1 Was the QoE of the software product bad when the feedback request disturbed
participants?

A disturbing feedback request did not necessarily indicate that participants would negatively
evaluate the QoE of the software product. In other words, the disturbances caused by the
feedback requests did not always result in a bad experience of the software product. This
statement was concluded as the result of disconfirming the predicted pattern we identified for
this study, as follows:

P: The Quality of Experience (QoE) of the software product is always perceived to be
bad if the feedback request disturbs the participant.

Software Qual J

The analysis showed that the QoE of the software product was perceived to be good even
when the feedback requests disturbed the participants. As explained in Pattern matching in
Sect. 3.3, to test the pattern P, we explored the following two possible alternative patterns
within the participants’ quotes.

AP1: The Quality of Experience (QoE) of software product is perceived to be good, if the
feedback request disturbs the participant
AP2: The Quality of Experience (QoE) of software product is perceived to be good if the
feedback request does not disturb the participant

We evaluated the alternative patterns AP1 and AP2 using the participants’ ratings that were
collected via the post-questionnaire and the feedback tool after and during the usage respec-
tively. Figure 5 presents the participants’ ratings for the feedback requests and the QoE of the
software product, collected from the post-questionnaire. The x-axis indicates the ratings of the
feedback requests, and the y-axis shows the quality ratings for the software product.

The observation of the alternative patterns AP1 and AP2 in the matrix in Fig. 5 showed that
when the QoE of a software product was rated Good (4) (there were no Excellent (5) ratings),
in 37% of the cases, the feedback requests disturbed the participants (i.e., rated Bad (1) and
Poor (2)); these results aligned with AP1. In the same scenario of QoE rating, 63% of the
feedback requests did not disturb the participants (rated Fair (3) and Good (4)); these results
aligned with AP2. The observation of AP1 contradicted the predicted pattern and, thus,
disconfirmed it.

The similar observation was also found in the participants’ qualitative motivations. For
example, one participant liked the product and rated as a 4 with this rationale:

BIt was fun in creating the diagrams because I was lying on my bed and creating the
diagrams by using it. I like it.^

However, the same participant was disturbed by the feedback requests, rating these as a 1,
with the following rationale:

Fig. 5 Distribution of the QoE of the software product per each QoE of the feedback request (data series reflect
the QoE of the software product). Data is collected via the post-questionnaire

Software Qual J

BI was just fed up from this QoE because it was disturbing a lot while making diagrams.^

The pattern AP1 could also be seen within the feedback collected from the feedback tool.
There was one case in which the QoE of the software product was perceived as Excellent (5),
but the participant complained about the disturbing feedback requests. The observation of API
disconfirmed the P1.

The examples and the descriptive statistics showed that a disturbing feedback request did
not necessarily imply a bad QoE of the evaluated software product.

4.2.2 Was the QoE of the software product statistically related to the QoE of the feedback
requests?

With the provided ratings, we could not find any evidence to show a dependency between the
quality ratings of the disturbing feedback request and the software product.

A correlation analysis was performed to measure the relationship between the participants’
ratings given to the feedback request and the quality of the software product, as collected through
the post-questionnaires. The results showed a very small, almost non-existent correlation (i.e.,
Pearson analysis [= −0.056, n = 35, p > .001] and Spearman analysis [= −0.032, n = 35, p > .001]).
The analyses indicated a lack of linear and monotonic relationships between the participant ratings
for the quality perception of the feedback request and the quality perception of the software product.

4.2.3 Were the QoEs of the software product justified with arguments about disturbing
feedback requests?

The QoEs of the software product were justified with arguments about factors other than the
disturbing feedback requests. The software characteristics and the experiencing context were
the focal points of these arguments.

The participants also provided arguments about the quality of the software product and the
experiencing context (e.g., device characteristics) that respectively addressed 97 and 42% of all
feedback for justifying the QoE of a software product in the post-questionnaire. Among this
feedback, no participant used any characteristics of a feedback request to justify poor QoE
ratings for a software product. We could argue that the two separate questionnaires at the end
of usage—one for the QoE of the feedback requests and one for the QoE of the software
product—allowed the participants to distinguish the feedback tool from the software product.
Therefore, the participants provided justifications for the QoE ratings of the software product
regardless of the ratings they had given for the feedback requests.

However, the feedback collected by the tool during the usage could not provide enough
evidence to justify the QoE ratings. Although four feedback quotes out of 64 were related to
the feedback requests, these quotes did not include interpretations of the QoE ratings. For
example, one participant, who complained about the interruptions of feedback request two
times, gave Poor (2) and Excellent (5) ratings to the QoEs of the same feature.

Software quality attributes were the most common factors that the participants used to
justify their ratings. Functionality, usability, learnability, portability, and performance were
the quality attributes that the participants most commonly used for these justifications.

Functionality and usability of software features were the most common categories of feedback.
Interestingly, of the 33 rationales provided for rating the software product in the post-questionnaire,
19 feedback rationales addressed the software’s functionality and 16 feedback rationales addressed

Software Qual J

its usability categories. Furthermore, out of 60 total feedback quotes, the feedback tool collected 36
and 16 feedback quotes about the functionality and usability categories, respectively.

The participants gave feedback about crashes and errors in product functionality. The
participants were also disturbed by non-conformities with the expected functionality. They
reported issues with some features that did not work properly or were not successful in
fulfilling their expectations.

B…The zoom function did not zoom text as I wanted, making the model very wired, and
the lines which I draw between actor/stakeholder to circles did not connect properly,
annoying me as well.^
BFlexisketch seems to lack the following [functionalities]: Arrow heads for directions,
copy and, paste mechanisms, screen resize functionality, Eraser functionality, Scrollbar
functionality, code generation functionality…^
BBecause the poor functionalities, and strong dependence on the device (for now it can
only run in android system) that don’t flexible for the user.^

The participants provided feedback on the usability of features, particularly with regard to
their ease or difficulty of use. Some of the participants failed to recognize the software product
as user-friendly, while others admired its simplicity.

BIt was okay as it had all of the features as you need, but it wasn’t user-friendly at all at
least not on my phone….^
BIt’s fair because the application is very simple and easy to use, but it also has many
limitations.^
BThe program was literally unusable in horizontal view which was a huge set-back on
my smartphone. Some options disappeared while being in horizontal view.^

The participants also provided feedback on the performance of the product in relation to an
overly long response time.

BThe response is too slow.^
BIt takes some time but maybe because of the touch screen quality.^

Even when the participants watched or read the instruction guidelines, they still faced
learnability issues.

BI watched the instruction video, but I still don’t know how to draw specific items, like
arrows.^

From the participants’ points of view, the context was perceived to be a part of product
attributes. The participants also provided arguments about device attributes (e.g., mobility
characteristics, screen size, touch-based functionality, and the operating system of the device)
as context factors to justify their ratings. The participants complained about using the product
on small-sized screens.

BI think it is useful when I watch the tutorials, but when I really use it, I found it is really
not suitable for mobile phone.^
BToo less kind of elements can be chosen to draw a diagram. Not easy to use on a small-
screen mobile device.^

Software Qual J

BBecause the poor functionalities, and strong dependence on the device (for now it can
only run in android system) that don’t [make it] flexible for the user.^
BThis app can be installed in mobile with Android system, which is easy to carry and
edit.^

4.3 Feedback about feedback requests

Of the 64 feedback collected by the feedback tool, only four feedback rationales from two
participants, representing 6% of the total qualitative feedback, concerned the feedback
requests. The four feedback rationales represented only 0.9% of the total participant experience
ratings. Most of the participants did not provide qualitative data (85%); instead, they only rated
their experiences.

A few participants gave feedback concerning disturbing feedback requests. Experience
interruptions and inappropriate question timing were two categories of disturbing feedback
that the participants mentioned.

BDo not interrupt during drawing!^, BThis forum really disturbs.^
BBecause I am getting the rating without even getting a chance to finish my sketch,^
BThe same as a previous comment.^

Exploring all of the ratings and the feedback revealed that a majority of partici-
pants did not provide qualitative feedback; however, those that did provide such
feedback primarily pointed to the quality of the software and the context (as
discussed in Sect. 4.2.3). The feedback was provided both to complain about and to
admire the quality of the software product. However, the feedback about the feedback
requests was only issued in the case of disturbance. When no issue was found, the
participants did not admire the feedback requests.

Although the majority of the participants did not offer feedback on the feedback
requests, the few received feedback was still useful for obtaining an accurate under-
standing of the problems that the participants experienced with the feedback tool.

5 Discussion

According to the findings of our study, feedback requests that are interrupting a user’s
task, that are too early for what a user knows about the product, that are too frequent,
or that are with inappropriate content may disturb users. The first factor is congruent
with earlier research. The second and third factors are not surprising, although
previous studies did not address them as the disturbing factors caused by feedback
requests, but the latest factor is new.

A request for feedback that interrupts a user during a task affects the user’s task
and, as a consequence, the user’s experience negatively (Bailey et al. 2001). In our
study, such interruption was particularly problematic during a modeling task, which
required particular attention. The interruption generated frustration because the user
has to remember the task and how to proceed toward completion of the task. As
suggested by Adamczyk and Bailey (2004), it is crucial to find the best moment of
interruption and thereby reduce the extent of disturbance.

Software Qual J

A feedback request that is issued to a user before he is familiar with the product is
perceived to be disturbing. Such familiarization phase is important as a user needs to
establish knowledge of the product and how the product is to be used. Some users do
not accept the product initially, but they have better perception over prolonged use
(Karapanos 2013). Also, the familiarization is accompanied by a change of thoughts,
feelings, and expectations about the product (Karapanos 2013). An initially positive
judgment of a product may become negative or vice versa. Thus, when confronted
with a feedback request that is too early, the user may be unable to judge the product
or may give feedback that is incorrect. According to our results, the knowledge about
this inability is felt by the user as a disturbance. It is important to match the timing
of a feedback request with the user’s knowledge about what the request is seeking
feedback for.

A rapid re-occurrence of requests for feedback disturbs users. This insight is
interesting because it extends the understanding of how temporal aspects of feedback
requests affect the product user. Even well-timed requests for feedback may be
disturbing if they are issued too frequently. Especially disturbing is the repetition of
requests if the user has already submitted feedback that was well thought through and
well formulated. It is a must for a feedback mechanism to consider the history of the
feedback dialog with a user.

New is that a feedback request that offers too limited functionality in the eyes of the user
can disturb as well. This insight is interesting because related work has focused on the aspect
of timing feedback requests. According to our data, it is also important that the feedback
request gives the user the ability to provide feedback in a way that is intuitive and desired by
the user. Our chosen combination of a Quality of Experience rating and a text field for user
feedback was perceived to be too limited by some users. Additional capabilities may be
needed, such as screenshots, voice, video recordings, or photographs (Seyff et al. 2011).

It is interesting to compare these results with the Qualinet definition of QoE (Le Callet et al.
2012) that we apply here for a feedback tool. According to that definition BQuality of
Experience (QoE) is the degree of delight or annoyance of a person whose experiencing
involves an application, service, or system. It results from the person’s evaluation of the
fulfilment of his or her expectations and needs with respect to the utility and/or enjoyment in
the light of the person’s context, personality, and current state.^ A feedback tool annoys users
if the parameters are not configured well. Users may feel delighted while giving feedback if the
feedback has strong utility, such as the anticipated improvement of the product in a future
release. The study has shown that the expectations and needs of the feedback tool are about the
timing and content parameters that should be respected when issuing a feedback form. The
user’s context, personality, and current state are reflected in the user’s expertise of using the
product. We could not identify any other factors in the presented study, including cultural
background, which would affect the QoE of the feedback tool.

A feedback request that is disturbing causes negative emotions such as anger
(Solomon 2008; Scherer 2005). Such emotions are visible in bad QoE ratings
(Antons et al. 2014). The disturbances may also hinder sustained adoption of a
product. A user may resist incorporating a product into his daily routines where
usefulness and long-term usability are important (Karapanos 2013). Even though the
software product may evoke positive emotions in a user, the negative emotions caused

Software Qual J

by the disturbance may prevent or delay development of emotional attachment to the
product. Hence, in addition to offering an attractive product, it is important to present
feedback requests satisfactorily or to offer the possibility to disable the feedback tool.

While feedback may disturb a product’s users, our study showed that this distur-
bance has a negligible impact on the users’ reported Quality of Experience for the
software product. The users differentiated between a feedback tool they were provid-
ing feedback with and the software they were providing feedback for. The disturbance
of a user was hardly reflected in that user’s QoE ratings for the product. As we could
not find any prior study that investigated this perceived separation between product
and feedback tool, we believe that this is an interesting new result. The negligible
impact implies that software product vendors may trust the collected feedback even if
the feedback requests disturb the users to some extent.

In contrast to the perceived separation of a feedback tool and a software product, users
blurred the boundary between the software product and the device on which the product was
running. The user feedback mixed product and device factors. Perhaps the users could not
distinguish the device and the product, or they considered the device to be a part of the
product. Thus, a software vendor can receive informative feedback not only about the software
product but also about the devices the customers are using to run the product on.

Although disturbing feedback requests did not show any significant impact on QoE
of the studied software product, the disturbances might affect how well feedback
requests are answered. Disturbances may demotivate users to provide rich feedback
since the users would ignore disturbing feedback requests. This reaction was evident
in that many study participants canceled feedback requests or switched the feedback
tool off. The design of a feedback mechanism is possible through configuring the
parameters of the feedback requests model.

The above findings were achieved in a case study that was set up the environment
close to reality with less pressure and control on the participants. A pressurized and
controlled environment, on one side, could increase the sensitivity of users in
response to the environment that might impact on users’ perception. On the other
hand, such controlled situation could not affect the ability of users to evaluate the
software or feedback. Putting users on a regime such as time pressure could amplify
the anxiety leading to different judgment (Maule et al. 2000).

Like any other study, also the presented study has its limitations. For example, we
did not research when users decide to decline feedback requests (e.g., canceling
feedback forms). The research could be interesting to investigate the consequence of
being disturbed by the feedback requests in a future study. However, this limitation
did not affect the presented result in Fig. 3 that was achieved based on the post-
questionnaire. Furthermore, approaches need to be evaluated for including the identi-
fied parameters of the user task, feedback request timing, expertise-phase, feedback
request frequency, and feedback request content in the design of a feedback mecha-
nism. Finally, users may have different thresholds for feeling affected by disturbance;
depending on the situation, some are rapidly disturbed, while others can accept a lot
of annoyance (Van der Ham et al. 2014). Therefore, categories of users, contexts, and
products may need to be identified to allow investigation of feedback request param-
eters in each cluster separately. Such research will be future work.

Software Qual J

6 Summary and conclusion

Quality of Experience (QoE) is a measurement that is widely used to assess users’
perceptions when experiencing a software product. With knowledge about QoE,
companies hope to make appropriate decisions to win and retain customers by
evolving their products in meaningful ways. Collecting users’ QoEs requires automatic
and frequent requests for feedback. However, automated requests for feedback may
disturb users and perhaps degrade their QoE ratings.

The current study investigated the candidate relationship between the characteristics
of automatic feedback requests and the QoE of a software product. The study
followed a mixed qualitative-quantitative research method with 35 software engineer-
ing participants. We integrated a feedback tool into a mobile software product to
prompt participants for feedback randomly in the middle of their experiences. At the
end of the users’ experiences, we collected their perceptions about the feedback
requests and their experiences of using the application through a post-questionnaire.

We offer two contributions to the researcher and practitioner communities. First, we
propose a feedback request model that parameterizes the characteristics of feedback
requests. The parameters outline the task, timing of the task for issuing the feedback
requests, user’s expertise-phase with the product, the frequency of feedback requests
about the task, and the content of the feedback request. The findings may inform
researchers of the parameters that disrupt users’ experiences, which may help them
develop suitable feedback mechanisms to control users’ disturbance. The findings may
also help practitioners design the feedback tool and the corresponding feedback
mechanisms by adjusting the parameters.

Second, the study showed that feedback requests have negligible impacts on users’
QoEs of a software product. Specifically, the quality of the software product has a
greater impact on the QoE than the characteristics of the feedback request. For
practitioners, this finding implies an ability to trust feedback collected from users,
even when the requests for feedback are considered disturbing. The results also imply
that the quality of a software product is the most important aspect for practitioners to
focus on when examining user feedback. However, the design of suitable feedback
mechanisms should not be neglected, since feedback mechanisms are useful for
collecting informative user feedback about both software products and any distur-
bances caused by feedback requests. The informative user feedback assists in enhanc-
ing software engineering activities. An informative user feedback assists requirement
engineers to elicit new requirements and revise the current requirements for next
releases of the software product (Carreño and Winbladh 2013). Such rich feedback
also contains valuable information for developers to redevelop a functionality and
validate the software product idea (Kujala 2008) toward the software evolution
(Pagano and Brügge 2013).

The result was achieved based on constructing one situation. However, case
variations in practice might stimulate users’ emotions differently and lead to new
achievements. Therefore, it would be interesting to replicate the study considering
several varieties of contextual and system factors in future. The materials for replica-
tion are available in http://bit.ly/2o89rO4.

Software Qual J

http://bit.ly/2o89rO4

Appendix: Post-questionnaire

Table 2 shows the questions that were used to collect user feedback after the participants
performed modeling of the requirements.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and repro-
duction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were made.

References

Abelow, D. (1993). Automating feedback on software product use. CASE Trends December, 15–17.
Adamczyk, P. D., & Bailey, B. P. If not now, when?: the effects of interruption at different moments within task

execution. In SIGCHI conference on Human factors in computing systems, Vienna, Austria, 2004: ACM.
Ahtinen, A., Mattila, E., Vaatanen, A., Hynninen, L., Salminen, J., Koskinen, E., et al. User experiences of

mobile wellness applications in health promotion: user study of Wellness Diary, Mobile Coach and
SelfRelax. In 3rd International Conference on Pervasive Computing Technologies for Healthcare,
London, UK, 2009 (pp. 1–8): IEEE.

Ames, M., & Naaman, M. Why we tag: motivations for annotation in mobile and online media. In SIGCHI
conference on Human factors in computing systems, San Jose, California, USA, 2007 (pp. 971–980): ACM.

Antons, J.-N., Arndt, S., Schleicher, R., & Möller, S. (2014). Brain activity correlates of quality of experience. In
Quality of experience (pp. 109-119): Springer.

Table 3 Post-questionnaire

=== About Yourself ===

Q1: Your Student ID:

Q2: Did you use Flexisketch already before this assignment? [Yes/No]

Q3: Do you have experience with applications like the Drug Supply Manager (DSM)? [Yes (describe your

experience:/No]

=== How You Did the Assignment ===

Q4: Did you install the QoE Probe before doing the modeling with Flexisketch? [Yes/No]

Q5: What device did you use for modeling with Flexisketch (e.g., I would have done it on “Sony Z2 Tablet” – you

might have used another one)?

Q6: When in the workshop video did you start the modeling (e.g., “12 minutes after start”)?

Q7: When in real-world time did you start the modeling (e.g., “December 14 at 09:04”)?

Q8: How much time did you spend for the modeling?

=== Your Experience of modeling with Flexisketch ===

Note again: no grades are given for this assignment – please be honest

Q9: How good was Flexisketch as a tool for modeling requirements? [Opinion Score Scale, rationale]

Q10: Being a potential requirements engineer, would you use Flexisketch again for requirements modeling?

[Yes/No, rationale]

=== QoE Probe ===

Q11: Approximately, how many times did you see any QoE Probe feedback form while you were using

Flexisketch?

Q12: How good was the QoE Probe in trying in minimizing the disturbance of your modeling work? [Opinion

Score Scale, rationale]

Q13: Any other comment?

Software Qual J

Bailey, B. P., Konstan, J. A., & Carlis, J. V. The effects of interruptions on task performance, annoyance, and
anxiety in the user interface. In IFIP International Conference on Human Computer Interaction
(INTERACT), Tokyo, Japan, 2001 (pp. 593–601).

Barrett, L. F., Mesquita, B., & Gendron, M. (2011). Context in emotion perception. Current Directions in
Psychological Science, 20(5), 286–290.

Beyer, J., & Möller, S. (2014). Gaming. In Quality of experience (pp. 367–381): Springer.
Broekens, J., Pommeranz, A., Wiggers, P., & Jonker, C. M. Factors influencing user motivation for giving online

preference feedback. In 5th Multidisciplinary Workshop on Advances in Preference Handling (MPREF’10),
Lisbon, Portugal, 2010: Citeseer.

Canale, S., Facchinei, F., Gambuti, R., Palagi, L., & Suraci, V. User profile based quality of experience. In 18th
Internation Conference on Computers (part of CSCC ‘14), Santorini Island, Greece, 2014 (Recent Advances
in Computer Engineering).

Carreño, L. V. G., &Winbladh, K. Analysis of user comments: an approach for software requirements evolution. In 35th
International Conference on Software Engineering (ICSE 2013) San Francisco, USA, 2013 (pp. 582–591): IEEE.

Carver, J., Jaccheri, L., Morasca, S., & Shull, F. (2003). Issues in using students in empirical studies in software
engineering education. Paper presented at the Ninth International Software Metrics Symposium.

Côté, N., & Berger, J. (2014). Speech communication. In Quality of experience (pp. 165–177): Springer.
Elo, S., & Kyngäs, H. (2008). The qualitative content analysis process. Journal of Advanced Nursing, 62(1), 107–115.
Feiten, B., Garcia, M.-N., Svensson, P., & Raake, A. (2014). Audio transmission. In Quality of experience (pp.

229–245): Springer.
Fernández-Dols, J.-M., & Russell, J. A. (2003). Emotions, affects, and mood in social judgements. In T. Millon,

M. J. Lerner, & I. B. Weiner (Eds.),Handbook of Psychology, Personality and Social Psychology (2 ed., Vol.
5, pp. 283–297). Hoboken New Jersey: John Wiley & Sons.

Fiedler, M., Hossfeld, T., & Tran-Gia, P. (2010). A generic quantitative relationship between quality of
experience and quality of service. IEEE Network, 24(2), 36–41.

Fotrousi, F. (2015).QoE-ProbeAndroid. https://github.com/farnazfotrousi/QoE-Probe-Android.Accessed 22May 2015.
Fotrousi, F., Fricker, S. A., & Fiedler, M. (2014). Quality requirements elicitation based on inquiry of quality-

impact relationships. Paper presented at the 22nd IEEE International Conference on Requirements
Engineering, Karlskrona, Sweden,

Fricker, S. A., Schneider, K., Fotrousi, F., & Thuemmler, C. (2015). Workshop videos for requirements
communication. Requirements engineering, 1–32, doi:10.1007/s00766-015-0231-5.

Froehlich, J., Chen, M. Y., Consolvo, S., Harrison, B., & Landay, J. A. (2007).MyExperience: a system for in situ
tracing and capturing of user feedback on mobile phones. Paper presented at the 5th international conference
on Mobile systems, applications and services (MobiSys2007), San Juan, Puerto Rico,

Garcia, M.-N., Argyropoulos, S., Staelens, N., Naccari, M., Rios-Quintero, M., & Raake, A. (2014). Video
streaming. In Quality of experience (pp. 277–297): Springer.

Garland, R. (1991). The mid-point on a rating scale: is it desirable. Marketing Bulletin, 2(1), 66–70.
Golafshani, N. (2003). Understanding reliability and validity in qualitative research. The Qualitative Report, 8, 597–606.
Golaszewski, S. (2013). Flexisketch. https://play.google.com/store/apps/details?id=ch.uzh.ifi.rerg.

flexisketch&hl=en.
Hak, T., & Dul, J. (2009). Pattern matching. In A. J. Mills, G. Durepos, & E. Wiebe (Eds.), Encyclopedia of case

study research (Vol. 2, pp. 663–665). Thousands of Oaks, CA: Sage Publications.
Herzog, A. R., & Bachman, J. G. (1981). Effects of questionnaire length on response quality. Public Opinion

Quarterly, 45(4), 549–559.
Höst, M., Regnell, B., & Wohlin, C. (2000). Using students as subjects—a comparative study of students and

professionals in lead-time impact assessment. Empirical Software Engineering, 5(3), 201–214.
Hsieh, H.-F., & Shannon, S. E. (2005). Three approaches to qualitative content analysis. Qualitative Health

Research, 15(9), 1277–1288.
Ickin, S., Wac, K., Fiedler, M., Janowski, L., Hong, J.-H., & Dey, A. K. (2012). Factors influencing quality of

experience of commonly used mobile applications. Communications Magazine, IEEE, 50(4), 48–56.
ITU-T (2003, ITU-T P.800. in Mean Opinion Score(MOS) terminology, ed: Telecommunication Standardization

Sector of ITU.
Ivory, M. Y., & Hearst, M. A. (2001). The state of the art in automating usability evaluation of user interfaces.

ACM Computing Surveys (CSUR), 33(4), 470–516.
Jordan, P. W. (1998). Human factors for pleasure in product use. Applied Ergonomics, 29(1), 25–33.
Karapanos, E. (2013). User experience over time. In Modeling users’ experiences with interactive systems (pp.

57–83): Springer.
Kennedy, M. M. (1979). Generalizing from single case studies. Evaluation quarterly, 3(4), 661–678.
Khirman, S., & Henriksen, P. Relationship between quality-of-service and quality-of-experience for public

internet service. In 3rd Workshop on Passive and Active Measurement, Fort Collins, Colorado, USA, 2002.

Software Qual J

https://github.com/farnazfotrousi/QoE-Probe-Android
http://dx.doi.org/10.1007/s00766-015-0231-5
https://play.google.com/store/apps/details?id=ch.uzh.ifi.rerg.flexisketch&hl=en
https://play.google.com/store/apps/details?id=ch.uzh.ifi.rerg.flexisketch&hl=en

Kim, J. H., Gunn, D. V., Schuh, E., Phillips, B., Pagulayan, R. J., & Wixon, D. Tracking real-time user
experience (TRUE): a comprehensive instrumentation solution for complex systems. In SIGCHI
Cconference on Human Factors in Computing Systems, Florence, Italy, 2008: ACM.

Kujala, S. (2008). Effective user involvement in product development by improving the analysis of user needs.
Behaviour & Information Technology, 27(6), 457–473.

Kujala, S. (2003). User involvement: a review of the benefits and challenges. Behaviour & Information
Technology, 22(1), 1–16.

Kujala, S., & Miron-Shatz, T. Emotions, experiences and usability in real-life mobile phone use. In SIGCHI
Conference on Human Factors in Computing Systems, Paris, France, 2013 (pp. 1061–1070): ACM.

Le Callet, P., Möller, S., & Perkis, A. (2012, Qualinet white paper on definitions of quality of experience.
European Network on Quality of Experience in Multimedia Systems and Services.

Maule, A. J., Hockey, G. R. J., & Bdzola, L. (2000). Effects of time-pressure on decision-making under uncertainty:
changes in affective state and information processing strategy. Acta Psychologica, 104(3), 283–301.

Mitra, K., Zaslavsky, A., & Åhlund, C. A probabilistic context-aware approach for quality of experience
measurement in pervasive systems. In 26th ACM symposium on applied computing, Taichung, Taiwan
2011 (pp. 419–424): ACM.

Pagano, D., & Brügge, B. User involvement in software evolution practice: a case study. In 35th International
Conference on Software Engineering (ICSE 2013), San Francisco, CA, USA, 2013 (pp. 953–962): IEEE Press.

Potter, W. J., & Levine-Donnerstein, D. (1999). Rethinking validity and reliability in content analysis. Journal of
Applied Communication Research, 27(3), 258–284.

Raake, A., & Egger, S. (2014). Quality and quality of experience. In Quality of experience (pp. 11-33): Springer.
Reiter, U., Brunnström, K., De Moor, K., Larabi, M.-C., Pereira, M., Pinheiro, A., et al. (2014). Factors

influencing quality of experience. In Quality of experience (pp. 55-72): Springer.
Roto, V., Law, E., Vermeeren, A., & Hoonhout, J. (2011). User experience white paper - bringing clarity to the

concept of user experience. Results from Dagstuhl Seminar on Demarcating User Experience. Dagstuhl
Seminar Proceedings. Schloss Dagstuhl, Leibniz-Zentrum for Informatik, Germany.

Scherer, K. R. (2005).What are emotions?And how can they bemeasured? Social Science Information, 44(4), 695–729.
Schleicher, R., Westermann, T., & Reichmuth, R. (2014). Mobile human–computer interaction. In Quality of

experience (pp. 339–349): Springer.
Seyff, N., Ollmann, G., & Bortenschlager, M. iRequire: gathering end-user requirements for new apps. In 19th

IEEE International Requirements Engineering Conference (RE’11), Trento, Italy, 2011: IEEE.
Sjøberg, D. I., Anda, B., Arisholm, E., Dybå, T., Jørgensen, M., Karahasanović, A., et al. (2003). Challenges and

recommendations when increasing the realism of controlled software engineering experiments. In R. Conradi, &A.
I. Wang (Eds.), Empirical methods and studies in software engineering (pp. 24-38). Berlin Heidelberg: Springer.

Solomon, R. C. (2008). The philosophy of emotions. In M. Lewis, Haviland-Jones, J. M. & Barrett, L. F. (Eds.),
Handbook of emotions (3rd ed., pp. 3–16). New York: Guilford Press.

Strohmeier, D., Egger, S., Raake, A., Hoßfeld, T., & Schatz, R. (2014). Web browsing. In Quality of experience
(pp. 329–338): Springer.

Szajna, B., & Scamell, R. W. (1993). The effects of information system user expectations on their performance
and perceptions. MIS Quarterly, 17(4), 493–516. doi:10.2307/249589.

Tohidi, M., Buxton, W., Baecker, R., & Sellen, A. User sketches: a quick, inexpensive, and effective way to elicit
more reflective user feedback. In 4th Nordic Conference on Human-Computer Interaction: Changing Roles,
Oslo, Norway, 2006 (pp. 105–114): ACM.

Van der Ham, W. F., Broekens, J., & Roelofsma, P. H. (2014). The effect of dominance manipulation on the
perception and believability of an emotional expression. In T. Bosse, Broekens, J., Dias J., & Zwaan, J. v. d
(Ed.), Emotion modeling: towards pragmatic computational models of affective processes (pp. 101–114,
Lecture Notes in Artificial Intelligence): Springer.

Varela, M., Skorin-Kapov, L., & Ebrahimi, T. (2014). Quality of service versus quality of experience. In Quality
of experience (pp. 85–96): Springer.

Wüest, D., Seyff, N., & Glinz, M. Flexisketch: a mobile sketching tool for software modeling. In International
Conference on Mobile Computing, Applications, and Services, 2012 (pp. 225–244): Springer.

Wüest, D., Seyff, N., & Glinz, M. Sketching and notation creation with FlexiSketch Team: evaluating a new
means for collaborative requirements elicitation. In 23rd IEEE International Requirements Engineering
Conference (RE‘15), Ottawa, Canada, 2015 (pp. 186–195): IEEE.

Yin, R. K. (2014). Case study research: Design and methods (5ed.). Thousands of Oaks, CA: Sage publications.
Zhang, J., & Ansari, N. (2011). On assuring end-to-end QoE in next generation networks: challenges and a

possible solution. IEEE Communications Magazine, 49(7), 185–191.
Zijlstra, F. R., Roe, R. A., Leonora, A. B., & Krediet, I. (1999). Temporal factors in mental work: effects of

interrupted activities. Journal of Occupational and Organizational Psychology, 72(2), 163–185.

Software Qual J

http://dx.doi.org/10.2307/249589

Farnaz Fotrousi is a Ph.D. candidate in Software Engineering at Blekinge Institute of Technology in Sweden
and FHNW in Switzerland. Farnaz is interested in applied research, combining her over 15 years of industrial
experience in software companies with her research knowledge. Her main areas of research interests are in
product management and evolution, user feedback for modeling of the product success, and requirement
engineering. Farnaz’s research is currently on leveraging users’ Quality of Experience (QoE) for validation
and maturation of software systems.

Samuel Fricker is a professor at FHNW, Switzerland, and also affiliated with Blekinge Institute of Technology,
Sweden. He is interested in small products that help to solve big challenges. With more than 20 years of industry
and research experience, he has worked with companies at any scale, from Startups to Fortune500, and with
government agencies such as the European Commission.

Software Qual J

Markus Fiedler is a professor of teletraffic systems at Blekinge Institute of Technology (BTH), Sweden. His
research interests are focused on enabling and disabling factors for Quality of Experience (QoE) in networks and
applications; on the validation of future internet solutions in terms of QoE; on performance measurements,
modeling, analysis, and control in virtual and wireless environments; and on ecologic and economic sustain-
ability factors in the context of networking. He has been active in European projects (COST, FP6, FP7). In
particular, he held several leading positions in a series of Networks of Excellence on future networks (EuroNGI,
EuroFGI, and Euro-NF). He has also been co-organizer of a set of Quality of Experience-related Dagstuhl
seminars.

Software Qual J

	The effect of requests for user feedback on Quality of Experience
	Abstract
	Introduction
	Background and related work
	Research methodology
	Objectives
	Research questions
	Study design
	Selection of the software product and the feedback tool
	Participants
	Study procedure
	Data collection method
	Data analysis method
	Statistical analysis

	Threats to validity

	Results and analysis
	Modeling of feedback requests
	The effect of disturbing feedback requests on the QoE of a software product
	Was the QoE of the software product bad when the feedback request disturbed participants?
	Was the QoE of the software product statistically related to the QoE of the feedback requests?
	Were the QoEs of the software product justified with arguments about disturbing feedback requests?

	Feedback about feedback requests

	Discussion
	Summary and conclusion
	Appendix: Post-questionnaire
	References

