
Quality Requirements Elicitation
Based on Inquiry of Quality-Impact Relationships

Farnaz Fotrousi
Blekinge Institute of Technology

(BTH)
Karlskrona, Sweden

farnaz.fotrousi@bth.se

Samuel A. Fricker
Blekinge Institute of Technology

(BTH)
Karlskrona, Sweden

samuel.fricker@bth.se

Markus Fiedler
Blekinge Institute of Technology

(BTH)
Karlskrona, Sweden
markus.fiedler@bth

Abstract—Quality requirements, an important class of non-
functional requirements, are inherently difficult to elicit.
Particularly challenging is the definition of good-enough quality.
The problem cannot be avoided though, because hitting the right
quality level is critical. Too little quality leads to churn for the
software product. Excessive quality generates unnecessary cost
and drains the resources of the operating platform. To address
this problem, we propose to elicit the specific relationships
between software quality levels and their impacts for given
quality attributes and stakeholders. An understanding of each
such relationship can then be used to specify the right level of
quality by deciding about acceptable impacts. The quality-impact
relationships can be used to design and dimension a software
system appropriately and, in a second step, to develop service
level agreements that allow re-use of the obtained knowledge of
good-enough quality. This paper describes an approach to elicit
such quality–impact relationships and to use them for specifying
quality requirements. The approach has been applied with user
representatives in requirements workshops and used for
determining Quality of Service (QoS) requirements based the
involved users’ Quality of Experience (QoE). The paper describes
the approach in detail and reports early experiences from
applying the approach.

Index Terms—Requirement elicitation, quality attributes,
non-functional requirements, quality of experience (QoE), quality
of service (QoS)

I. INTRODUCTION
Quality requirements are an important class of non-

functional requirements [1]. They concern software system
attributes such as functional suitability, performance,
reliability, usability, security, and portability that are important
for achieving stakeholder goals [2]. The satisfaction of these
quality attributes determines whether the software system
meets the goals of its stakeholders or whether the system has a
negative impact for these stakeholders [3, 4].

Meeting the right level of quality is important to balance
benefits and cost [5]. The quality of a software system needs to
be at least as good as to make the software useful and
competitive, but should not be excessive to avoid cost and
unnecessary use of resources. Insufficient quality leads to
disappointment and consequent churn when stakeholders

decide to abandon the software solution and adopt alternatives
instead [6]. Excessive quality may lead to an unnecessarily
expensive design of the software system [7], to unnecessary
consumption of resources needed for operating the system [8],
and to trade-offs where other quality attributes suffer [9].

To address the problem of finding the level of good-enough
quality, the relationship between software quality and the
impacts of such quality for the stakeholders of the software
system needs to be understood. As demonstrated for the
Quality of Service (QoS) of a telecommunication network and
the Quality of Experience (QoE) of the network users, a
quality–impact relationship can be developed empirically by
setting quality levels of a given quality attribute and measuring
the reaction of the stakeholders that were exposed to these
quality levels [10].

This paper describes how to use quality–impact analysis for
eliciting requirements about good-enough quality of a software
system. The proposed method guides the elicitation of the
quality–impact relationships and explains how to use the
gained insights to specify quality requirements. The method
delivers empirical evidence for a specific software system that
is more reliable than generic expert opinion. The evidence
pertains to the features that were investigated and the
stakeholders that were participating in the requirements
inquiry, thus is adequate and relevant for decision-making
about that software system’s quality requirements.

The paper describes the proposed quality–impact elicitation
method in depth. It gives details about the key ideas of the
method and explains how to tailor the method depending on the
investigated quality characteristics, the stakeholder goals
impacted by these quality characteristics, and the instruments
that the investigator is able to apply. The paper provides an
example of how the method is applied in practice by reporting
about its use in a real-world software development project.

The paper is structured as follows. Section II reviews
existing work and motivates quality requirements elicitation
based on quality–impact relationship inquiry. Section III
describes the method in-depth. Section IV describes how the
method is applied and reports the lessons-learned from such
method application. Section V compares the method and the
obtained results with related work. Section VI concludes.

978-1-4799-3033-3/14/$31.00 c© 2014 IEEE RE 2014, Karlskrona, Sweden303

II. RELATED WORK
According to ISO/IEC FDIS 25010, the quality of a system

is the degree to which the system satisfies the needs of its
stakeholders. The determination of whether a system exhibits
the desired quality characteristics is not straightforward,
however. In contrast to functional requirements, many quality
requirements do not have a sharp boundary between
satisfaction and non-satisfaction. Instead, they are gradually
satisfied [11], thus called soft requirements [12].

The softness characteristic of implies that the right level of
desired requirements quality needs to be identified during
requirements engineering [5]. Each such quality level has its
own specific costs and benefits. High quality levels are
considered more costly than low quality levels because more
expensive designs or approaches to provision of the software
service need to be chosen to implement the requirement. In a
similar vein, increase of the quality level implies increase of
the benefits generated by the requirement. A product that is
considered useless because of too low quality becomes useful
or even competitive with increased quality. Too much quality,
however, is considered excessive thus not adding any value for
stakeholders despite quality improvement. The trade-off
between cost and value impacts is a basis to determine the
desired quality level and specify the requirement in a quantified
manner [13, 14].

Goal models have been proposed to elicit quality
requirements [3, 15]. Such models allow identification of needs
for improving, increasing, or keeping the level of the quality
characteristics of a software. To support systematic
identification of goals and qualities within a given domain,
ontologies have been developed and used to support
requirements elicitation [16, 17]. The means-ends relationships
that are an inherent part of a goal model make the impact of
such a quality requirements explicit [18, 19]. The goals that are
enabled by such a decision are used as a rationale that
motivates the quality requirement.

Unfortunately, goal models are of limited help eliciting
appropriate levels of quality. Goal models help identifying the
quality characteristics that are perceived relevant by
stakeholders, and the means-ends relationships connect these
qualities to the impact that is desired by the stakeholders.
However, they do not guide a requirements engineer in how
much of a desired quality is good enough. One of the key
limitation is that the goal models do not relate a given quality
level to a given level of impact beyond the coarse-grained
levels of a requirement being denied, weakly denied,
undecided, weakly satisfied, and satisficed [3]. In addition, the
application of goal models does not deliver the information
needed to quantify a quality requirement, thus make its
satisfaction measurable with attributes such as scale and meter
[13].

Several supporting elicitation methods have been proposed
for requirements elicitation [20]. These include the use of
questionnaires, interviews, workshops, creativity methods,
storyboards, use cases, role-plays, and prototyping. Review of
prototypes has been particularly effective in identifying
usability concerns and refining user interaction design to reach

user acceptance [21]. The construction of such prototypes
allows a development team to capture assumptions about
desired software characteristics and to validate these
assumptions, for example by reviewing them as
implementation proposals with concerned stakeholders [22,
23].

The supporting elicitation methods provide limited support
for the determination of good-enough quality levels because of
their generality. Any question can be asked in a questionnaire
or interview, any topic explored in a workshop, and a multitude
of design decisions be captured with storyboards, use cases,
role-play, and prototypes. Guidelines that have been proposed
to identify quality requirements [24, 25] target the discovery of
quality, but do not help in determining measurable levels of
quality. The requirements engineer is thus left with his intuition
or experience for asking the right questions [26]. The use of
experience, however, is risky as the levels for good-enough
quality may change between different software products and
product-usage contexts.

To enable requirements engineers to determine appropriate
levels of good-enough system quality, we were studying the
field of telecommunication. In particular we were looking for
approaches that allow the requirements engineer and the
system stakeholders understand the meaning of a given level of
quality, for example in terms of how the quality level affects
the degree of stakeholder satisfaction. In the field of
telecommunication, substantial work has been performed for
understanding how to measure degrees system quality and how
a given degree of system quality affects user attitude [27].

For a telecommunication system, Quality of Service (QoS)
requirements are stated that concern system performance,
availability, and capacity [17]. Often these requirements are
agreed in a service level agreements (SLA) between the system
customers and the supplier [28]. User satisfaction is expressed
as Quality of Experience (QoE) and refers to the “degree of
delight or annoyance of the user of an application or service”
[29]. It has been shown that a system’s Quality of Service
affects the user’s Quality of experience [27]. Too little user
delight and too much user annoyance leads to churn, thus users
that try to look for alternatives and try to avoid using the
system under consideration.

The knowledge of how QoS is related to QoE has not been
translated into requirements engineering methodology yet. In
particular, it is unclear how to exploit the relationship between
QoS levels with QoE levels in the inquiry of software systems
requirements. Also needed is an explanation of how to apply
the specifics of the QoS-QoE relationship on the determination
of good-enough quality for any system quality attribute and for
any important stakeholder need that is impacted by the possible
quality levels.

III. QUALITY-IMPACT INQUIRY
This paper proposes a method that we call Quality-Impact

Inquiry to address the so far unsatisfactorily solved problem of
determining adequate levels of quality. As required from a
solution proposal, we have explained why a novel method was
needed, specify the principles and steps of the method, and

304

describe how to apply it [30]. To demonstrate that the method
is sound, we go a step further than required from a solution
paper and report about a preliminary validation that we
performed with a real-world software development project. The
paper describes the method in sufficient depth to enable
replication in practice and further validation research.

 The Quality-Impact Inquiry method is based on the
principles outlined in our earlier work about the generic
relationships between Quality of Service and Quality of
Experience [10]. These principles have been translated into a
software requirements engineering context by integrating it into
an inquiry-based requirements analysis process [31] and
combined with prototyping, questionnaires, and workshops as
supporting methods for collection of quality measurements and
stakeholder opinions. During the workshop, stakeholders are
exposed to requirements engineer-defined quality that has been
implemented in the prototype and questioned about their
perceived quality impact. The correlation between quality
measurement and stakeholder opinion is analyzed and used as
decision-support to determine and then specify good-enough
requirements quality.

The quality-impact inquiry method adapts the inquiry cycle
of requirement analysis [31] as follows: the documentation
phase is adapted to implement a prototype using a set of
accepted requirements described the desired system and
collects quality attributes during stakeholder actions. The three
elements of requirement discussion phase including questions,
answers and reasons are supported by the questionnaire
elicitation. Finally the results from the former phases contribute
to either freeze or change requirements in the evolution phase.

Fig 1 gives an overview of the Quality-Impact Inquiry
process. The remainder of this section describes the generic
Quality-Impact Inquiry method and how the method may be
tailored. The ensuing section describes how the method has
been applied in real-world projects and reports about early
lessons-learned.

A. Inquiry Process
Fig 1 gives an overview over the process that characterizes

the Quality-Impact Inquiry method. The process contains four
steps: preparation, measurement, analysis and decision-making.
It is applied iteratively until enough evidence has been
collected to decide about what good-enough quality should be
for a quality attribute under investigation.

1) Preparation: During the first step, Preparation, the

materials needed for allowing stakeholders to experience the
quality characteristics under investigation are prepared. The
work includes the preparation and documentation of a
prototype, the formulation of a questionnaire, the recruitment
of stakeholders for participation in a workshop, and the
scheduling of the workshop.

In the proposed method, quality impact is measured
subjectively through a questionnaire. The quality impact is also
affected by a real value of quality that is measured objectively
[32] and automatically using a prototype. Therefore a list of
valid quality requirements are identified from SRS document
that is relevant to one feature or a group of features (f) and
presented as pairs of quality attribute and value:

 Q = { (qatt , qval) | f } (1)

As an example in SRS, a non-functional requirement can be
stated as “response time should be less that 2 s”. “Response
time” is the attribute and 2 s is the value.

The software might be in a preliminary release (i.e. pre-
alpha, alpha and beta testing), a candidate release close to a
final product/service, or even a released product ready for an
evolution. Preparation of artifacts including a prototype from a
software feature(s) and a questionnaire about their quality is the
pre-requisite to run the method. The stakeholders experience
the software and then answer the questionnaire. Data that are
collected from the software use and the questionnaire are
analyzed to evolve quality requirements in the software

Fig 1. Quality-Impact Inquiry Method

305

specification document (SRS) if needed.
Based on the quality attributes, the prototype is tailored for

the feature(s) f to support measurement of Q. The questionnaire
will be tailored using Q to collect quality impacts of feature(s) f
relevant to user list U:

 U = {u} (2)

Then, scenarios for data collection, and software guidelines
to be followed by users are prepared in this step. Translating
the questionnaire to the user’s mother tongue is another action
that might be required.

2) Measurement: During the second step, Measurement, a

workshop is performed with the aim of collecting quality
measurements and user feedback. During the workshop the
stakeholders experience predetermined qualities by utilizing
the prototype according to a pre-defined script. During the use
of the prototype measurements are taken about the quality that
the stakeholders experienced. After the use of the prototype,
the prepared questionnaire is administered to collect
stakeholder opinions about the impacts of the perceived
quality.

While the users are using the application through clients
such as a smartphone or a PC, quality values qmsr (i.e. qmsr is a
qval relevant to qatt for feature(s) f) are quantified by function m,
automatically using analytical tools, server log generators or
piece of codes embedded in the software.

 qmsr = OP(m(qatt | u, f)) | OP ∈ { MIN or MAX } (3)

The function captures the worst value of measured quality
attributes in different actions of a user for the given feature(s) f,
depending on whether the quality has a success or failure
measure characteristic [33]. For a success measure such as
availability, the higher value of the quality attribute shows
better quality but for a failure measure such as response time, a
higher value of the quality attribute shows worst quality.
Therefore minimum or maximum value of each case would be
the candidate value for measured quality.

Another source of measurement is the questionnaire
designed to translate the quality impacts qimp (i.e. qimp is a qval
relevant to qatt for feature f) into scored values provided by
users. In the questionnaire, users are typically asked to provide
ratings,

 qimp = s(qatt | u , f) (4)

and rationales in forms of comments that explain their ratings:

 comm = c(qatt | u , f) (5)

Furthermore, the questionnaire asks users to rate “quality in
use” attributes such as satisfaction as a sub list of quality
attributes:

 QinUse ⊂ Q (6)

The quality impact is translated into a discrete value that is
scaled using scores such as Mean Opinion Score (MOS) [34].

3) Analysis: During the third step, Analysis, the quality
measurements are correlated with the stakeholder opinions
about quality impact. This step involves application of
statistical analyses based on data that has been collected
during the measurement step in the ongoing and previous
Quality-Impact Inquiry iterations. The analysis can also be
enhanced through a-priori knowledge of the generic nature of
the studied quality-impact relationships.

The relation between the measured quality (qmsr) and
quality impact (qimp) will be identified through a regression
analysis, similar to correlation analysis between QoE and QoS
[35, 36]. The regression function is calculated for a feature f
and quality attribute qatt:

 q̂imp(qmsr) = r(qmsr | f , qatt) (7)

Different regression functions for the relationship including
linear, logarithmic, exponential and power have potential to be
candidate, however the analysis compares the regression
function and matches the best.one [27].

Then, an estimation of quality value for a given quality
impact is calculated by the inverse function of the regression
model:

 q̂msr(qimp) = r-1(qimp | f , qatt) (8)

The output of the analysis proposes a list of quality values for
different quality impacts including maximum quality impact.

If the quality-impact analysis does not provide enough data
for a mature analysis, some changes on the prototype are
applied to change the quality values artificially. The looped
arrow from analysis box to prototyping box in Fig 1 provides
possibilities to achieve enough data for investigating impact
changes and perform more reliable analysis than the analysis of
less data points.

4) Decision-Making: During the fourth step, Decision-
Making, the analysis results are used to decide about
acceptable and desired levels of quality of the investigated
quality attributes. The decisions are recorded in the software
requirements specification. The step concludes with decision-
making about whether to add inquiry iterations and how the
parameters of these ensuing inquiries should be adapted for
best improving the knowledge about good-enough quality.

The decision-making process selects suitable quality value
from the evidences and decides whether to evolve the value for
the relevant quality requirement in the SRS document.

This process identifies maximum applicable quality impact
considering technical feasibility, product strategies, and
limitation of resources to achieve the relevant quality value,
and then applies the decision making function.

306

Decision-making is a function of parameters including
estimated quality value for maximum impact (q̂msr) of a quality
attribute, the value of relevant non-functional requirement
(qSRS), the list of rationale for the quality attribute rating
(comm) beside all quality-in-use ratings (QinUse), to interpret
whether the current quality fulfills the users acceptance.

 qnew = { g(q̂msr , qSRS , comm , QinUse | f , qatt) } (9)

This function defines a new value for the quality attribute.
The decision-making will be performed for all quality attributes
in Q.

B. Method Tailoring
There are a wide variety of variation points to adapt the

generic Quality-Impact Inquiry process. The variations are
needed to be flexible enough to adapt the process to specific
requirements engineering constellations. Table 1 gives an
overview.

TABLE 1. Estimated quality values for given quality impacts

Variation Point Variants

Software
Features

Stakeholders may be exposed to different features.
Quality requirements may be specific to features or
the impact of quality levels be perceived differently
depending on the feature.

Quality
Attributes

Stakeholders may be exposed to different quality
attributes. Each feature or application may have its
own set of prioritized quality attributes.

Quality Levels

For the selected quality attributes, different quality
levels may be investigated. The selection of the
quality level should be based on information need
and be guided by statistical analysis methodology.

Stakeholder
Sampling

Different individuals may be invited for
participation in the inquiry workshops. The selected
stakeholders should be as representative as possible.

Impact
Attributes

Stakeholders may be questioned about different
quality impacts. Each application or feature may aim
at achieving its own specific impacts.

Measurements Different measurements may be selected to record
quality levels and stakeholder impacts.

Prototyping
Approaches

The simulation of different quality characteristics
may require different approaches of building the
quality-simulating prototype.

Impact Function

Different impact functions may be chosen the
represent the relationship between a given quality
attribute and its impact. We were using linear and
exponential functions so far.

IV. REAL-WORLD EXAMPLE OF METHOD APPLICATION

A. Example Application
To demonstrate how to implement the method in practical

situations, we present here the results and lessons-learned of an
early validation that we have done in a real-world project. We
applied the method for a Diabetes Smartphone Application that
will be used by diabetes patients to take blood glucose
measurements, to plan insulin injection, and to send the
collected observation history to a diabetes specialist for
consultation. We evaluated the quality-impact relationships for
the features user authentication and observation sharing of
diabetes information.

As an input to the quality-impact inquiry we had used a
prototype that was instrumented with software for monitoring
the timing of user interactions. The inquiry was performed in a
laboratory and with a smart phone from the application
developers with pre-loaded data. The requirements engineer,
the product manager, and selected end-users participated in the
inquiry workshop. The inquiry was performed with one end-
user at the time.

During the inquiry, the end-user was introduced to the tasks
he to be performed with the application, was given a short,
tailored user manual, and then used the selected features first
according to instructions and then without help. He opened the
application, selected the data he wanted to share with his
clinician, authenticated himself, and submitted the data. Then
the authentication service requested username and password.
When authenticated, the data was sent to the application server
in the hospital. After the guided and unguided experiences were
concluded, the end-user filled out the quality of experience
questionnaire. Fig 2 gives an impression of the setup.

Fig 2: User interaction scenario with instrumented application and subsequent
answering of the quality of experience questionnaire.

The quality-impact inquiry processes was implemented for
the Diabetes Smartphone Application as follows:

1) Preparation: The requirements engineer extracted
relevant quality requirements from the software requirement
specification document. Based on these extracts he
instrumented the software with a time-stamp logger.

The requirements engineer created a short guideline to
assist the end-user in using the application. It described the
features to be evaluated and how the features should be used.

Based on the extracted quality requirements, the
requirements engineer created a quality of experience
questionnaire with generic questions about the experience,
about the features and product, and about the perceived quality.
For the Diabetes Smartphone Application, the quality questions
were about performance, reliability, and availability. Fig 3
shows the questionnaire.

307

The	 Experience	
1.	 Please	 tell	 us	 the	 name	 you	 would	 give	 to	 the	 feature:	
	
	
The	 Features	 and	 Product	
2	 Overall,	 how	 satisfied	 are	 you	 with	 the	 features	 you	 just	 have	
experienced?	
□	 Excellent	 (5)	 □	 Good	 (4)	 □	 Fair	 (3)	 □	 Poor	 (2)	 □	 Bad	 (1)	
Please	 tell	 us	 why	 you	 feel	 that	 way:	
	
	
3.	 Overall,	 how	 good	 is	 the	 feature	 according	 to	 your	 opinion?	
□	 Exceptional	 □	 Better	 than	 comparable	 products	 and	 features	
□	 Good-‐enough	 □	 Insufficient	
Please	 tell	 us	 why	 you	 feel	 that	 way:	
	
	
4.	 Will	 you	 return	 to	 use	 the	 product	 again?	
□	 Yes	 □	 No	
Please	 tell	 us	 why	 you	 feel	 that	 way:	
	
	
The	 Quality	
5.	 The	 next	 question	 is	 about	 response	 time.	 With	 response	 time	
we	 mean	 the	 time	 when	 you	 press	 a	 button	 until	 the	 software	
does	 what	 it	 is	 supposed	 to	 do.	
How	 do	 you	 rate	 the	 response	 time	 of	 the	 feature?	
□	 Excellent	 (5)	 □	 Good	 (4)	 □	 Fair	 (3)	 □	 Poor	 (2)	 □	 Bad	 (1)	
Please	 tell	 us	 why	 you	 feel	 that	 way:	
	
	

Fig 3: Questionnaire. The last question can be replicated and adapted to any
feature the requirements engineer is interested of.

2) Measurement: The following steps describe the inquiry
workshop that was performed once for each user separately.

In the beginning of the inquiry the requirements engineer
welcomed the participants, defined the goals of the inquiry,
and shared the agenda of the meeting.

The product manager explained the feature to be used and
gave prepared guideline to the end-user.

The end-user used the application according to the
instructions. He did so twice to allow us collecting data about
the learning and knowledgeable use of the feature. The
application generated logs automatically and captured
information from the user interaction (see Fig 4 for an
example). In all timestamp, the time from the internal clock on
smartphone was used. Log entries were created when end-
user requests are received and when application screen/data
have been displayed. The response time extracted from the
example is the duration between two time stamps taken from
the starting to the ending of an activity.

Fig 4: Extract from the log file with timestamps and activities

 After application usage, the requirements engineer
provided instructions for answering the quality of experience
questionnaire. The user answered the questionnaire
accordingly. The answers that were collected with quantitative
scales provided data for calculating the quality-impact
relationship. The qualitative rationale that the users gave for
these values assisted us in interpreting the quantitative values.

At the end of the session, the requirements engineer
debriefed the participants and thanked them for the
participation.

3) Analysis: The filled-in questionnaires and time-stamp
logs from all end-users interactions were the inputs for the
analysis process. The end-users were satisfied with the quality
as they reflected in the questionnaire Therefore the analysis of
this example did not identify any deviation to update quality
attributes. However the similar study was conducted in our lab
where users perception of response time in downloading a
webpage containing an image were collected [37]. The
analysis of the data distributions concluded a close match for a
regression formula on relations between MOS and response
time excluding null opinion scores:

 q̂imp(qmsr) = 4.836 exp(-0.15 qmsr) (10)

Fig 5. Quality impact (MOS) as a function of quality value (response time(s))

Fig 5 plots this regression function that shows quality
impact (qimp) as a function of quality value (qmsr)[37]. The
response time collected from different experiments as well as
collected relevant quality impacts will plot the Fig 4. Taking
the reverse of this function estimates quality value (q̂msr) as a
function of quality impact (qimp):

 q̂msr (qimp) = -6.67 ln(qimp / 4.836)s (11)

308

Fig 6. Quality value (Response time (s)) as a function of quality impact
(MOS)

As Fig 6 plots the inverse regression function, shorter
response identifies the better perception of quality and user’s
score. Table 2 estimates quality values for qimp in the range of
between 3 and 4.5. This value identifies the best threshold
value for a quality attribute such as response time that is
sufficient for the user expectations.

TABLE 2. Estimated quality values for given quality impacts

Quality impact (qimp) MOS Estimated quality value (q̂msr) for
Response time

4.5 0.48 s

4 1.27 s

3.5 2.15 s

3 3.18 s

4) Decision making: Decision making process involves

choosing a threshold value for a quality attribute based on
inputs from analysis including an estimated quality value for
response time, user experiences and rationales, the list of
quality-in-use as well as the value of response time defined in
the SRS document.

Selecting the good-enough quality level requires trade-offs
between the reaching enough user acceptance level instead of
maximum level in return for gaining technical feasibility by
limited resources such as cost, time and effort. Identifying
maximum applicable user perception (quality impact) in each
analysis is the result of such trade-offs. If quality impact 4 is
recognized enough, then the estimated quality value of 1.27s
will be involved in decision making process to update SRS
with a good-enough quality value. Typically, the critical value
for quality impact is assumed to be 3. In telecommunication
area, accepted quality impact in video streaming is considered
as 3.5, although the quality impact of 4 is a good choice [38].

B. Lesson learned
1) As shown in the example, the inquiry workshop allowed

us to collect the data necessary for analyzing the quality-
impact relationship for response time and quality of
experience. The workshop lasted about 10 minutes per user.
Data aggregation and analysis was concluded within a few
hours. Thus the method was relatively efficient. Scalability

can be achieved by working with multiple users in parallel, for
example as part of a training workshop.

2) From the users that participated in the inquiry workshops
we received positive feedback about the experience and about
most of the questions we asked. However, one of the users
was puzzled about perceived reliability and availability. He
stated that he expected the application to work and to be
available in the laboratory situation he was invited to. This
shows that usage context affects the relevance of quality
attributes. Some quality attributes are relevant in some
contexts only. We plan to account for this feedback by
extending the quality-impact inquiry to prolonged pilot uses of
the application in the real-world contexts of the users.

3) On little usages of the software product could not give
the full impression to users. An issue relevant to a quality
attribute such as availability might not be risen in a short
period of use, this is what reflected by the stakeholder in the
example stated in section IV. To reach more accurate data, a
prolonged usage should be planned.

4) Not only quality attributes are identified in the proposed
quality-impact inquiry method, there might be some proposals
for updating functional requirements extractable from the
users’ comments given in the questionnaire. As an example, if
the end-user could not find how to submit the blood glucose
data, this could be reflected in the users’ perception rating as
well as provided rationale.

5) Training before and during the workshop provides
knowledge and skills to mitigate the threats of biasing the user
perception that occurred due to misuse of the feature.
Distractions during the workshop should be removed to boost
concentration of users in expressing their real unbiased
perception.

V. DISCUSSION
The Quality-Impact Inquiry method is a generic approach

to collecting data about quality levels and how these quality
levels impact stakeholder satisfaction. It builds on our earlier
work that shows that a relationship between quality levels and
quality impact can be established. The Quality-Impact Inquiry
method extends such earlier work by describing a 4-step
process that allows the requirements engineer to inquire how
different levels of quality impact the satisfaction of stakeholder
needs. The 4-step process is independent of the specific type of
quality and independent of the specific kind of stakeholder
need. Instead the method can be tailored to any pair of quality
and impact measurement that are of interest for the system
under consideration. A condition for such tailoring is that a
relationship between quality level measurements and impact
measurements can be established.

The identified level of quality impact transforms the
knowledge into a judgment of good-enough quality. Good
enough quality can be decided considering cost and benefit
views while exposing barriers and breakpoints [5]. Product
strategy decisions, competitors and learning processes are other
factors that assist requirement engineer to adjust the level of
quality.

309

The Quality-Impact Inquiry method complements existing
quality requirements elicitation methods. Pairs of system
quality and impact variables that should be investigated as part
of requirements inquiry can be identified with goal-based
inquiry methods [3, 15]. Means-ends relationships of
prioritized soft goals that relate to system qualities, respectively
to stakeholder needs, are candidates for inquiry of the
corresponding quality-impact relationships. These candidates
are used as an input to the tailoring of the Quality-Impact
Inquiry method.

The Quality-Impact Inquiry method utilizes supporting
elicitation methods [20], in particular the use of questionnaires,
prototypes, and workshops. The method combines these
supporting methods into a structured process for creating and
analyzing evidence for decision-making about good-enough
quality. Recommendations about good practice, e.g. of how to
perform an effective workshop [39], should be followed as
long as they do not interfere with the objective of the inquiry of
quality-impact relationships that are under investigation. Side
results from applying the method, e.g. the discovery of new
needs or stakeholders during a workshop, should be embraced
and handed-over as an input to the main stream of requirements
engineering work that is performed in the development project.

In a larger scale validation of the proposed method in a real
world situation various stakeholders and experienced
requirements engineers are involved. To achieve trustworthy
results, a specific probability is identified for considering a
confident interval in which the value of quality impact lies
within a specific range. Smaller numbers of stakeholders that
involve in the experiment method generate wider confidence
intervals since there is an inverse square root relationship
between the confidence interval and the sample size. It means
that to cut error margin in half, number of involved
stakeholders is assumed to be four times more.

For practitioners, the Quality-Impact Inquiry method
represents an extension of the requirements engineering toolset
and is used for addressing the challenging problem of
determining good-enough product quality. Once the relevant
quality-impact relationships have been established, they can be
reused while evolving and maintaining the application and for
specifying the quality levels of comparable applications, for
example in a software product line.

Quality-Impact Inquiry is not a method that is easy to apply
and should thus be used by requirement engineers that are
experienced in experimentation with end-users. In many
practical situations, this is unproblematic. It is common to use
experienced requirements engineers for critical tasks such as
the development of service level agreements of software-based
services [40].

The Quality-Impact Inquiry method complements
competitive analysis of product quality [5]. It allows a
definition of thresholds for useful quality and excessive quality
based on evidence gathered by analyzing the perception of
stakeholders. In the example of QoS and QoE, the requirements
engineer determines the service quality threshold by translating
quality of experience judgments with the experimentally
determined quality-impact relationship. In the real-world

example described in this paper, the former was quantified with
software reaction time and the latter expressed with the Mean
Opinion Score. The questionnaire in Fig 3 shows that the
relationship can also be calculated for other impacts. For
example, question 3 was used to collected data about the
strategic positioning of the feature according to the Quper
model [5]. Question 4 allowed collecting data about the risk of
churn. Any prior knowledge about the nature of the relationship,
e.g. as expressed by the exponential function in [10], reduces
the need for measurements, thus reduces the effort of quality-
impact inquiry.

For research, an understanding of the generic relationships
between levels of more types of software quality and impact is
urgently needed. These generic relationships reduce the need
for experimentation during real-world requirements elicitation
by pointing to the functions that should be used during quality-
impact inquiry. The characterization of the generic relationship
between QoS and QoE as an exponential function [10] is an
example of the research that is needed. Security and usability
are examples of quality attributes that should be prioritized by
research. The research may include investigation of what
appropriate measurement scales are, e.g. of security or usability,
and how a generic quality-impact relationship may be
expressed and investigated based on scales other than the ratio
scale that we used in Fig 4 and Fig 5. Also open is the
development of an understanding of how the interaction of
multiple quality variables, e.g. security and usability [9], can be
expressed with quality-impact relationships, thus made
amenable to requirement elicitation with the Quality-Impact
Inquiry method we have presented.

The study of quality-impact relationships would also allow
building empirical evidence for checking deeply held beliefs in
the requirements engineering field. One such belief is
expressed with the KANO model [41]. That model states that
the impact of quality on stakeholder satisfaction is expressed
through exponential or linear functions that describe attractive
requirements, which cause delight when implemented, one-
dimensional requirements, which are easily articulated, or
must-be requirements, which are not obvious, but considered
self-evident by stakeholders. The presented Quality-Impact
Inquiry method enables practitioners to determine the exact
relationships for the software products and features they are
specifying. For researchers, it can be used to inform the design
of empirical research studies that aim at investigating generic
quality-impact relationships.

VI. SUMMARY AND CONCLUSIONS
The paper has described an approach to quality

requirements elicitation based on inquiry of quality-impact
relationships. The method, called Quality-Impact Inquiry,
guides a requirements engineer in the inquiry of good-enough
software quality from the viewpoint of the appropriate
stakeholders of the software system. When applying the
method, stakeholders experience a prototype of a software
system. The requirements engineer collects the real values of
chosen quality attributes and subjective feedback from the
stakeholders about perceived quality impacts. The analysis of

310

quality-impact uses a regression function. The method can be
tailored to pairs of qualities and impacts that are of interest for
the specific software system. Systematic use of the method
gives support for deciding about appropriate the quality levels.
These can then be specified in a quantified manner for example
by stating minimal, maximal, and expected quality in a
software requirements specification (SRS) or service level
agreement (SLA).

The Quality-Impact Inquiry method was applied for
requirements engineering in real-world development projects.
One example was shown to describe how to apply the method
in practice and to report on lessons-learned. We reported how
we have applied the method for these requirements engineering
endeavors, shared early experiences from applying the method,
and have given recommendations for practical use of the
method.

Future research should aim at validating and evaluating the
method in further, large-scale requirement engineering
situations. Moreover, future research should aim at expanding
the understanding of the generic relationships between given
combinations of software quality attributes and their impacts as
well as how quality attributes interact with each other. The
resulting knowledge will translate into a SLA and help to allow
and to reuse the knowledge of appropriate quality levels. It will
also help accelerating and simplifying quality requirements
inquiry in real-world projects, and enable research to check
deeply held beliefs about how quality and impacts are
interrelated.

VII. ACKNOWLEDGMENTS
This work has been co-sponsored by the European

Commission through the FI-PPP integrated project FI-STAR
under grant agreement number 318389.

VIII. REFERENCES
[1] M. Glinz, "On Non-Functional Requirements," presented at the

IEEE International Requirements Engineering Conference
(RE'07), New Delhi, India, 2007.

[2] J. Boegh, "A New Standard for Quality Requirements," IEEE
Software, vol. 25, pp. 57-63, 2008.

[3] L. Chung, B. Nixon, E. Yu, and J. Mylopoulos, Non-Functional
Requirements in Software Engineering. Boston, USA: Kluwer
Academic Publishers, 2000.

[4] M. Haigh, "Software Quality, Non-Functional Software
Requirements and IT-Business Alignment," Software Quality
Journal, vol. 18, pp. 361-385, 2010.

[5] B. Regnell, R. Berntsson Svensson, and S. Olsson, "Supporting
Roadmapping of Quality Requirements," IEEE Software, vol.
25, pp. 42-47, 2008.

[6] K. Kilkki, "Quality of Experience in Communications
Ecosystem," Journal of Universal Computer Science, vol. 14,
pp. 615-624, 2008.

[7] L. Bass, P. Clements, and R. Kazman, Software Architecture in
Practice, 3rd ed.: Addison-Wesley Professional, 2012.

[8] G. Jung, M. Hiltunen, K. Joshi, R. Schlichting, and C. Pu,
"Mistral: Dynamically Managing Power, Performance, and
Adaptation Cost in Cloud Infrastructures," presented at the
IEEE International Conference on Distributed Computing
Systems (ICDCS 2010), Genoa, Italy, 2010.

[9] C. Braz, A. Seffa, and D. M'Raihi, "Designing a Trade-Off
Between Usability and Security: A Metrics-Based Model,"
presented at the 11th IFIP TC 13 International Conference on
Human-Computer Interaction (INTERACT 2007), Rio de
Janeiro, Brazil, 2007.

[10] M. Fiedler, T. Hossfeld, and T.-G. Phuoc, "A Generic
Quantitative Relationship between Quality of Experience and
Quality of Service," IEEE Network, vol. 24, pp. 36-41, 2010.

[11] M. Glinz, "Rethinking the Notion of Non-Functional
Requirements," presented at the 3rd World Congress for
Software Quality, Munich, Germany, 2005.

[12] C. Irvine and T. Levin, "Quality of Security Service," presented
at the 2000 Workshop on New Security Paradigms (NSPW'00),
New York, NY, USA, 2000.

[13] S. Jacobs, "Introducing Measurable Quality Requirements: A
Case Study," presented at the 4th IEEE International
Symposium on Requirements Engineering (RE'99), Limerick,
Ireland, 1999.

[14] T. Gilb, Competitive Engineering: A Handbood for Systems
Engineering, Requirements Engineering, and Software
Engineering using Planguage: Butterworth-Heinemann, 2005.

[15] A. I. Antón and C. Potts, "The use of goals to surface
requirements for evolving systems," in International
Conference on Software Engineering, Kyoto, Japan, 1998, pp.
157-166.

[16] A. Souag, C. Salinesi, and I. Wattiau, "Ontologies for Security
Requirements: A Literature Survey and Classification,"
presented at the Advanced Information Systems Engineering
Workshops, Gdańsk, Poland, 2012.

[17] T. Wang, Y. Si, X. Xuan, X. Wang, X. Yang, S. Li, et al., "A
QoS ontology cooperated with feature models for non-
functional requirements elicitation," in Proceedings of the
Second Asia-Pacific Symposium on Internetware, Suzhou,
China, 2010, p. 17.

[18] L. M. Cysneiros and J. C. Sampaio do Prado Leite,
"Nonfunctional requirements: From elicitation to conceptual
models," IEEE Transactions on Software Engineering, vol. 30,
pp. 328-350, 2004.

[19] A. Herrmann and B. Paech, "MOQARE: misuse-oriented
quality requirements engineering," Requirements Engineering,
vol. 13, pp. 73-86, 2008.

[20] K. Pohl and C. Rupp, Requirements Engineering Fundamentals:
A Study Guide for the Certified Professional for Requirements
Engineering Exam - Foundation Level - IREB Compliant:
Rocky Nook Computing, 2011.

[21] M. Rettig, "Prototyping for Tiny Fingers," Communications of
the ACM, vol. 37, pp. 21-27, 1994.

[22] S. Fricker, T. Gorschek, C. Byman, and A. Schmidle,
"Handshaking with Implementation Proposals: Negotiating
Requirements Understanding," IEEE Software, vol. 27, pp. 72-
80, 2010.

[23] S. Fricker and M. Glinz, "Comparison of Requirements Hand-
Off, Analysis, and Negotiation: Case Study," presented at the
18th IEEE International Requirements Engineering Conference
(RE'10), Sydney, Australia, 2010.

[24] M. Hassenzahl, R. Wessler, and K.-C. Hamborg, "Exploring
and understanding product qualities that users desire," in 5th
Annual Conference of the Human-Computer Interaction Group
of the British Computer Society (IHm-HCI 01), Lille, France,
2001, pp. 95-96.

[25] R. J. Kusters, R. van Solingen, and J. J. Trienekens,
"Identifying embedded software quality: two approaches,"
Quality and Reliability Engineering International, vol. 15, pp.
485-492, 1999.

311

[26] J. Doerr, D. Kerkow, T. Koenig, T. Olsson, and T. Suzuki,
"Non-functional requirements in industry-three case studies
adopting an experience-based NFR method," in 13th IEEE
International Conference on Requirements Engineering, Paris,
France, 2005, pp. 373-382.

[27] M. Fiedler, T. Hossfeld, and P. Tran-Gia, "A generic
quantitative relationship between quality of experience and
quality of service," Network, IEEE, vol. 24, pp. 36-41, 2010.

[28] H.-B. Kittlaus and P. Clough, Software Product Management
and Pricing: Springer, 2009.

[29] P. Le Callet, S. Möller, and A. Perkis, "Qualinet White Paper
on Definitions of Quality of Experience (2012)," European
Network on Quality of Experience in Multimedia Systems and
Services, Lausanne, SwitzerlandMarch 2013 2013.

[30] R. Wieringa, N. Maiden, N. Mead, and C. Rolland,
"Requirements engineering paper classification and evaluation
criteria: a proposal and a discussion," Requirements
Engineering, vol. 11, pp. 102-107, 2006.

[31] C. Potts, K. Takahashi, and A. I. Antón, "Inquiry-based
requirements analysis," IEEE software, vol. 11, pp. 21-32, 1994.

[32] P. Brooks and B. Hestnes, "User measures of quality of
experience: why being objective and quantitative is important,"
Network, IEEE, vol. 24, pp. 8-13, 2010.

[33] M. Fiedler and T. Hoßfeld, "Quality of Experience-related
differential equations and provisioning-delivery hysteresis," in
21st ITC Specialist Seminar on Multimedia Applications-
Traffic, Performance and QoE Miyazaki, Japan, 2010.

[34] ITU, "ITU-T P.800," in Mean Opinion Score(MOS)
terminology, ed: TELECOMMUNICATION
STANDARDIZATION SECTOR OF ITU, 2003.

[35] H.-J. Kim, D. H. Lee, J. M. Lee, K.-H. Lee, W. Lyu, and S.-G.
Choi, "The QoE evaluation method through the QoS-QoE
correlation model," in Fourth International Conference on
Networked Computing and Advanced Information
Management (NCM'08) Gyeongju, Korea, 2008, pp. 719-725.

[36] T. N. Minhas and M. Fiedler, "Quality of experience hourglass
model," in International Conference on Computing,
Management and Telecommunications (ComManTel), Ho Chi
Minh City, Vietnam, 2013, pp. 87-92.

[37] J. Shaikh, M. Fiedler, and D. Collange, "Quality of Experience
from user and network perspectives," annals of
telecommunications-annales des telecommunications, vol. 65,
pp. 47-57, 2010.

[38] A. Khan, L. Sun, E. Jammeh, and E. Ifeachor, "Quality of
experience-driven adaptation scheme for video applications
over wireless networks," IET communications, vol. 4, pp. 1337-
1347, 2010.

[39] E. Gottesdiener, Requirements by Collaboration: Workshops
for Defining Needs: Addison-Wesley Professional, 2002.

[40] E. Marilly, O. Martinot, H. Papini, and D. Goderis, "Service
level agreements: a main challenge for next generation
networks," in 2nd European Conference on Universal
Multiservice Networks (ECUMN) Colmar, France, 2002, pp.
297-304.

[41] E. Sauerwein, F. Bailom, K. Matzler, and H. H. Hinterhuber,
"The Kano model: How to delight your customers," in
International Working Seminar on Production Economics, Igls,
Innsbruck, Austria, 1996, pp. 313-327.

312

